Accurate cancer risk estimation is crucial to clinical decision-making, such as identifying high-risk people for screening. However, most existing cancer risk models incorporate data from epidemiologic studies, which usually cannot represent the target population. While population-based health surveys are ideal for making inference to the target population, they typically do not collect time-to-cancer incidence data.
View Article and Find Full Text PDFIntroduction: United States Multi-Society Task Force colonoscopy surveillance intervals are based solely on adenoma characteristics, without accounting for other risk factors. We investigated whether a risk model including demographic, environmental, and genetic risk factors could individualize surveillance intervals under an "equal management of equal risks" framework.
Methods: Using 14,069 individuals from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial who had a diagnostic colonoscopy following an abnormal flexible sigmoidoscopy, we modeled the risk of colorectal cancer, considering the diagnostic colonoscopy finding, baseline risk factors (e.
Introduction: United States Multi-Society Task Force colonoscopy surveillance intervals are based solely on adenoma characteristics, without accounting for other risk factors. We investigated whether a risk model including demographic, environmental, and genetic risk factors could individualize surveillance intervals under an "equal management of equal risks" framework.
Methods: Using 14,069 individuals from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial who had a diagnostic colonoscopy following an abnormal flexible sigmoidoscopy, we modeled the risk of colorectal cancer, considering the diagnostic colonoscopy finding, baseline risk factors (e.
Background: Determining whether screening with multicancer detection (MCD) tests saves lives requires randomized controlled trials (RCTs). To inform RCT design, we estimated cancer-mortality outcomes from hypothetical MCD RCTs.
Methods: We used the Hu-Zelen model, previously used to plan the NLST, to estimate mortality reductions, sample-size, and power for 9 cancers for different RCT design parameters and MCD test parameters.