Publications by authors named "H A J Harley"

In this theme issue, our multidisciplinary contributors highlight the cognitive adaptations of marine mammals. The cognitive processes of this group are highly informative regarding how animals cope with specifics of and changes in the environment, because, not only did modern marine mammals evolve from numerous, non-related terrestrial animals to adapt to an aquatic lifestyle, but some of these species regularly move between two worlds, land and sea. Here, we bring together scientists from different fields and take the reader on a journey that begins with the ways in which modern marine mammals (whales, dolphins, seals, sea lions and manatees) utilize their perceptual systems, next moves into studies of the constraints and power of individuals' cognitive flexibility, and finally showcases how those systems are deployed in social and communicative contexts.

View Article and Find Full Text PDF

As long-term studies reveal, bottlenose dolphin communities comprise a complex network of individual relationships. Individuals form strong bonds (e.g.

View Article and Find Full Text PDF

Dolphins gain information through echolocation, a publicly accessible sensory system in which dolphins produce clicks and process returning echoes, thereby both investigating and contributing to auditory scenes. How their knowledge of these scenes contributes to their echoic information-seeking is unclear. Here, we investigate their top-down cognitive processes in an echoic matching-to-sample task in which targets and auditory scenes vary in their decipherability and shift from being completely unfamiliar to familiar.

View Article and Find Full Text PDF

Macphail's comparative approach to intelligence focused on associative processes, an orientation inconsistent with more multifaceted lay and scientific understandings of the term. His ultimate emphasis on associative processes indicated few differences in intelligence among vertebrates. We explore options more attuned to common definitions by considering intelligence in terms of richness of representations of the world, the interconnectivity of those representations, the ability to flexibly change those connections, and knowledge.

View Article and Find Full Text PDF

Aquatic species such as bottlenose dolphins can move in 3 dimensions and frequently view objects from different orientations. This study examined their ability to identify 2-D objects visually despite changes in orientation across 2 rotation planes. A dolphin performed a matching-to-sample task in which a sample was presented at a different orientation from its match in a 3-alternative choice array.

View Article and Find Full Text PDF