Allometry refers to the relationship between the size of a trait and that of the whole body of an organism. Pioneering observations by Otto Snell and further elucidation by D'Arcy Thompson set the stage for its integration into Huxley's explanation of constant relative growth that epitomizes through the formula of simple allometry. The traditional method to identify such a model conforms to a regression protocol fitted in the direct scales of data.
View Article and Find Full Text PDFHuxley's model of simple allometry provides a parsimonious scheme for examining scaling relationships in scientific research, resource management, and species conservation endeavors. Factors including biological error, analysis method, sample size, and overall data quality can undermine the reliability of a fit of Huxley's model. Customary amendments enhance the complexity of the power function-conveyed systematic term while keeping the usual normality-borne error structure.
View Article and Find Full Text PDFConservation of eelgrass relies on transplants and evaluation of success depends on nondestructive measurements of average leaf biomass in shoots among other variables. Allometric proxies offer a convenient way to assessments. Identifying surrogates via log transformation and linear regression can set biased results.
View Article and Find Full Text PDFBackground: The effects of current anthropogenic influences on eelgrass (Zostera marina) meadows are noticeable. Eelgrass ecological services grant important benefits for mankind. Preservation of eelgrass meadows include several transplantation methods.
View Article and Find Full Text PDF