Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs).
View Article and Find Full Text PDFGene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase, and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs).
View Article and Find Full Text PDFThe Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms.
View Article and Find Full Text PDFObjective: Innate and acquired resistance is the principle factor limiting the efficacy of tyrosine kinase inhibitors in lung cancer. We have observed a dramatic upregulation of the cell surface co-receptor neuropilin-2b in lung cancers clinically treated with tyrosine kinase inhibitors correlating with acquired resistance. We hypothesize that neuropilin-2b plays a functional role in acquired tyrosine kinase inhibitor resistance.
View Article and Find Full Text PDFHigh-throughput studies constitute an essential and valued source of information for researchers. However, high-throughput experimental workflows are often complex, with multiple data sets that may contain large numbers of false positives. The representation of high-throughput data in the Gene Ontology (GO) therefore presents a challenging annotation problem, when the overarching goal of GO curation is to provide the most precise view of a gene's role in biology.
View Article and Find Full Text PDF