Publications by authors named "H -G. Patterton"

Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.

View Article and Find Full Text PDF

Fermenting grape juice provides a habitat for a well-mapped and evolutionarily relevant microbial ecosystem consisting of many natural or inoculated strains of yeasts and bacteria. The molecular nature of many of the ecological interactions within this ecosystem remains poorly understood, with the partial exception of interactions of a metabolic nature such as competition for nutrients and production of toxic metabolites/peptides. Data suggest that physical contact between species plays a significant role in the phenotypic outcome of interspecies interactions.

View Article and Find Full Text PDF

Background: The relationship between the sequence of a protein, its structure, and the resulting connection between its structure and function, is a foundational principle in biological science. Only recently has the computational prediction of protein structure based only on protein sequence been addressed effectively by AlphaFold, a neural network approach that can predict the majority of protein structures with X-ray crystallographic accuracy. A question that is now of acute relevance is the "inverse protein folding problem": predicting the sequence of a protein that folds into a specified structure.

View Article and Find Full Text PDF

Trypanosomes diverged from the main eukaryotic lineage about 600 million years ago, and display some unusual genomic and epigenetic properties that provide valuable insight into the early processes employed by eukaryotic ancestors to regulate chromatin-mediated functions. We analysed Trypanosoma brucei core histones by high mass accuracy middle-down mass spectrometry to map core histone post-translational modifications (PTMs) and elucidate cis-histone combinatorial PTMs (cPTMs). T.

View Article and Find Full Text PDF

Grapes harbour a plethora of non-conventional yeast species. Over the past two decades, several of the species have been extensively characterised and their contribution to wine quality is better understood. Beyond fermentation, some of the species have been investigated for their potential as alternative biological tools to reduce grape and wine spoilage.

View Article and Find Full Text PDF