Acidovorax citrulli is a causative pathogen for bacterial fruit blotch (BFB) in Cucurbitaceae, including watermelon. The most effective method to control this plant disease is to cultivate resistant cultivars. Herein, this study aimed to establish an efficient screening method to determine the resistance of watermelon cultivars against A.
View Article and Find Full Text PDFIn our screening program for natural products that are effective in controlling plant diseases, we found that the culture filtrate of SFC20160907-M11 effectively suppressed the development of tomato late blight disease caused by . Using a bioassay-guided fractionation of antioomycete activity, 12 active compounds (-) were obtained from an ethyl acetate extract of the culture filtrate. Chemical structures of five new compounds - were determined by the extensive analyses of nuclear magnetic resonance (NMR), high resolution mass spectrometry (HRMS), and circular dichroism (CD) data.
View Article and Find Full Text PDFPlant pathogenic fungi cause serious diseases, which result in the loss of crop yields and reduce the quality of crops worldwide. To counteract the escalating risks of chemical fungicides, interest in biological control agents to manage plant diseases has significantly increased. In this study, we comprehensively screened microbial culture filtrates using a yeast screening system to find microbes exhibiting respiratory inhibition activity.
View Article and Find Full Text PDFBacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most severe diseases in radish cultivation. To control this plant disease, the most effective method has been known to cultivate resistant cultivars.
View Article and Find Full Text PDFUnlabelled: The mycelium of the plant pathogenic fungus exhibits distinct structures for vegetative growth, asexual sporulation, sexual development, virulence, and chlamydospore formation. These structures are vital for the survival and pathogenicity of the fungus, necessitating precise regulation based on environmental cues. Initially identified in , the transcription factor Con7p regulates conidiation and infection-related morphogenesis, but not vegetative growth.
View Article and Find Full Text PDFNADP/NADPH plays an indispensable role in cellular metabolism, serving as a pivotal cofactor in numerous enzymatic processes involved in anabolic pathways, antioxidant defense, and the biosynthesis of essential cellular components. NAD/NADH kinases (NADKs) phosphorylate NAD/NADH, constituting the sole de novo synthetic pathway for NADP/NADPH generation. Despite the pivotal role of NADP/NADPH in cellular functions, the physiological role of NADK remains largely unexplored in filamentous fungi.
View Article and Find Full Text PDFBackground: Interactions of plants with biotic stress factors including bacteria, fungi, and viruses have been extensively investigated to date. Plasmodiophora brassicae, a protist pathogen, causes clubroot disease in Cruciferae plants. Infection of Chinese cabbage (Brassica rapa) plants with P.
View Article and Find Full Text PDFis a destructive fungal pathogen that causes Fusarium head blight (FHB) on a wide range of cereal crops. To control fungal diseases, it is essential to comprehend the pathogenic mechanisms that enable fungi to overcome host defenses during infection. Pathogens require an oxidative stress response to overcome host-derived oxidative stress.
View Article and Find Full Text PDFFive new flavonoid C-glycosides named desmodinosides A-E (1-5) and one known compound, apigenin 6-C-β-d-xylopyranosyl-2''-O-β-D-glucopyranoside (6) have been isolated from the methanol extract of the aerial parts of Desmodium heterocarpon var. stigosum. These compounds were determined by 1D and 2D-NMR and HR-MS spectroscopies.
View Article and Find Full Text PDFis a necrotrophic fungal pathogen with an extremely broad host range, causing significant economic losses in agricultural production. In this study, we discovered a culture filtrate of bacterial strain HK235, which was identified as , exhibiting high levels of antifungal activity against . From the HK235 culture filtrate, we isolated a new antimicrobial peptide molecule designated as chitinocin based on activity-guided fractionation followed by characterization of the amino acid composition and spectroscopic analyses.
View Article and Find Full Text PDFLipases, which catalyze the hydrolysis of long-chain triglycerides, diglycerides, and monoglycerides into free fatty acids and glycerol, participate in various biological pathways in fungi. In this study, we examined the biological functions and regulatory mechanisms of fungal lipases via two approaches. First, we performed a systemic functional characterization of 86 putative lipase-encoding genes in the plant-pathogenic fungus Fusarium graminearum.
View Article and Find Full Text PDFIntron lariats excised during the splicing process are rapidly degraded by RNA lariat debranching enzyme (Dbr1) and several exonucleases. Rapid turnover of lariat RNA is essential to cellular RNA homeostasis. However, the functions of Dbr1 have not been investigated in filamentous fungi.
View Article and Find Full Text PDFMarine fungi produce various secondary metabolites with unique chemical structures and diverse biological activities. In the continuing search for new antifungal agents from fungi isolated from marine environments, the culture filtrate of a fungus SFC20160407-M11 exhibited the potential to control plant diseases caused by fungi. From the culture filtrate of SFC20160407-M11, a total of seven compounds were isolated and identified by activity-guided column chromatography and spectroscopic analysis: violaceol I (), violaceol II (), diorcinol (), versinol (), orcinol (), orsellinic acid (), and sydowiol C ().
View Article and Find Full Text PDFIn our screening program for new antifungal active compounds, a new modified γ-lactone curvicollide D (1) together with five known trichothecenes (2-6) were isolated from the culture filtrate of fungus Albifimbria verrucaria based on the in vitro antifungal assay. The chemical structure of new compound 1 was elucidated by NMR and HR-MS spectroscopic analyses, and the relative configurations of 1 were deduced from NOE experiments and coupling constant analysis. Compound 1 exhibited moderate antifungal activities against plant pathogenic fungi Botrytis cinerea, Colletotrichum coccodes, and Magnaporthe oryzae with MIC value in a range of 100-200 µg ml.
View Article and Find Full Text PDFAlternaria porri (Ellis) Clf. causes purple blotch disease on Allium plants which results in the reduction of crop yields and quality. In this study, to efficiently find natural antifungal compounds against A.
View Article and Find Full Text PDFMicrobial metabolites have been recognized as an important source for the discovery of new antifungal agents because of their diverse chemical structures with novel modes of action. In the course of our screening for new antifungal agents from microbes, we found that culture filtrates of two fungal species SFC20200425-M11 and SFC20200425-M27 have the potentials to reduce the development of fungal plant diseases such as tomato late blight and wheat leaf rust. From these two spp.
View Article and Find Full Text PDFIn the search for new natural resources showing plant disease control effects, we found that the methanol extract of suppressed fungal disease development in plants. To identify the bioactive substances, the methanol extract of was extracted by organic solvents, and consequently, four new 2-oxo-clerodane diterpenes (), a new 4(3 → 2)--clerodane diterpene (), together with ten known compounds () were isolated and identified from the extracts. Of the new compounds, compound showed a broad spectrum of antifungal activity with moderated minimum inhibitory concentration (MIC) values in a range of 50-100 μg/mL against tested fungal pathogens.
View Article and Find Full Text PDFPlants contain a number of bioactive compounds that exhibit antimicrobial activity, which can be recognized as an important source of agrochemicals for plant disease control. In searching for natural alternatives to synthetic fungicides, we found that a methanol extract of the plant species suppressed the disease development of rice blast caused by . Through a series of chromatography procedures in combination with activity-guided fractionation, we isolated and identified a total of eleven compounds including four labdane-type diterpenes (-), six isopimarane-type diterpenes (-), and one sesquiterpene ().
View Article and Find Full Text PDFTwo major QTL associated with resistance to Fusarium wilt (FW) were identified using whole-genome resequencing. Sequence variations and gene expression level differences suggest that TIR-NBS and LRR-RLK are candidate genes associated with FW-resistance. Fusarium wilt (FW) caused by Fusarium oxysporum f.
View Article and Find Full Text PDFThe Brevibacillus brevis HK544 strain, which was isolated from soil, exhibited antimicrobial activity against plant pathogens such as Botrytis cinerea, Phytophthora infestans, and Erwinia amylovora. Here, we report the draft genome sequence of the B. brevis HK544 strain, which consists of one circular chromosome of 6,486,246 bp with a GC content of 47.
View Article and Find Full Text PDF