This study analyzes the influence of the Pacific-Japan (PJ) atmospheric teleconnection pattern and its interaction with oceanic processes on sea surface warming over the Northwestern Pacific. The PJ pattern is a thermally driven Rossby wave that originates over the tropical western Pacific through deep convection and propagates toward high latitudes. It plays a significant role in sea surface warming by inducing anticyclonic circulation and the corresponding northwestward extension of the subtropical high over the Northwestern Pacific.
View Article and Find Full Text PDFRecent studies have discovered an intriguing nonstationary relationship between El Ninõ-Southern Oscillation (ENSO) and the Western Pacific (WP) teleconnection pattern, one of the most prominent winter atmospheric circulation patterns in the North Pacific, with a regime-dependent interdecadal modulation of significant and insignificant correlations. However, the physical process underlying the observed nonstationary ENSO-WP relationship is a puzzle and remains to be elucidated, which is also essential for clarifying the still-debated nontrivial issue on whether the WP is directly forced by ENSO or by midlatitude storm tracks-driven intrinsic processes. Based on empirical orthogonal function (EOF) analysis of the upper-tropospheric teleconnection patterns and associated Rossby wave sources (RWS), we show that the nonstationarity in question is due to the regime-dependent constructive or destructive interference in meridional overturning circulation between the two leading EOFs of RWS best correlated with ENSO and WP, respectively.
View Article and Find Full Text PDF