Laboratory-scale data on a component level are frequently used for prognostics because acquiring them is time and cost efficient. However, they do not reflect actual field conditions. As prognostics is for an in-service system, the developed prognostic methods must be validated using real operational data obtained from an actual system.
View Article and Find Full Text PDFIn this study, we present an in situ microfluidic system to precisely control highly porous polycaprolactone microspheres as tissue templates for tissue engineering. The porosity of the microspheres was controlled by adjusting the flow rates of the polymer phase and the pore-generating material phase in the dispersed phase. The microfluidic flow-focusing technique was adopted to manufacture porous microspheres using a relatively highly viscous polymer solution, and the device was fabricated by conventional photolithography and PDMS casting.
View Article and Find Full Text PDFAs the market for minimally invasive surgery has grown, the demand for high-precision and high-performance catheters has increased. Catheters for the diagnosis and treatment of cardiovascular or cerebrovascular disease mainly use a braided wire tube with a polymer inner liner and outer jacket to improve the pushability and trackability. The outer jacket should have an accurate inner and outer diameter and while maintaining a wall thickness of 150 µm or less.
View Article and Find Full Text PDFA sensitive determination of a synthetic fluoroquinolone antibacterial agent, moxifloxacin (MOX), by an enhanced chemiluminescence (CL) method using a microfluidic chip is described. The microfluidic chip was fabricated by a soft-lithographic procedure using polydimethyl siloxane (PDMS). The fabricated PDMS microfluidic chip had three-inlet microchannels for introducing the sample, chemiluminescent reagent and oxidant, and a 500 µm wide, 250 µm deep and 82 mm long microchannel.
View Article and Find Full Text PDFA rapid and sensitive chemiluminescence (CL) system coupled with a microfluidic chip has been presented to determine vitamin B12 (VB12) based on the reaction of luminol and silver nitrate (AgNO(3)) in the presence of gold nanoparticles (AuNPs). A microfluidic chip was fabricated by a soft-lithographic procedure using polydimethyl siloxane (PDMS) having four inlets and one outlet with a 200 μm wide, 250 μm deep, and 100 mm long microchannel. Ag(+) was used as a chemiluminogenic oxidant in this CL reaction which oxidized luminol to produce strong CL signal in the presence of AuNPs.
View Article and Find Full Text PDFChemiluminescence (CL) emission from luminol-tetrachloroaurate ([AuCl(4)](-)) system studied in presence of monosaccharide sugars such as glucose and fructose was investigated on a microfluidic chip fabricated by the soft lithography technique. CL emission from the luminol-[AuCl(4)](-) system at 430 nm was intensified remarkably by the catalytic activity of glucose and fructose at room temperature. Under optimized conditions, the CL emission intensity of the system was found to be linearly related to the concentration of the sugars.
View Article and Find Full Text PDF