Prostate cancer metastasis is a significant cause of mortality in men. PKD3 facilitates tumor growth and metastasis, however, its regulation is largely unclear. The Hsp90 chaperone stabilizes an array of signaling client proteins, thus is an enabler of the malignant phenotype.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2021
A sterically stabilized unilamellar nanocarrier vesicle (SSV) system containing dipalmitoylphosphatidylcholine, cholesterol, ursolic acid and PEGylated phospholipid has been developed by exploiting the structural advantages of ursolic acid: by spontaneously attaching to the lipid head groups, it induces curvature at the outer side of the bilayers, allowing the preparation of size-limited vesicles without extrusion. Ursolic acid (UA) also interacts with the PEG chains, supporting steric stabilization even when the amount of PEGylated phospholipid is reduced. Using fluorescence immunohistochemistry, vesicles containing ursolic acid (UA-SSVs) were found to accumulate in the tumor in 3 h on xenografted mouse, suggesting the potential use of these vesicles for passive tumor targeting.
View Article and Find Full Text PDFThe poor prognosis of head and neck squamous cell carcinoma (HNSCC) is partly due to the lack of reliable predictive markers. Connexin 43 (Cx43) protein and its cell-communication channels have been assigned tumor suppressor functions while the anti-apoptotic Bcl-2 (B-cell lymphoma-2) protein has been associated with negative prognostic significance in cancer. This study aimed to test the role of Cx43 protein on Bcl-2 expression, tumor progression and response to taxane-based treatment in HNSCC.
View Article and Find Full Text PDFSeveral promising anti-cancer drug-GnRH (gonadotropin-releasing hormone) conjugates have been developed in the last two decades, although none of them have been approved for clinical use yet. Crizotinib is an effective multi-target kinase inhibitor, approved against anaplastic lymphoma kinase (ALK)- or ROS proto-oncogene 1 (ROS-1)-positive non-small cell lung carcinoma (NSCLC); however, its application is accompanied by serious side effects. In order to deliver crizotinib selectively into the tumor cells, we synthesized novel crizotinib analogues and conjugated them to a [d-Lys]-GnRH-I targeting peptide.
View Article and Find Full Text PDFOxidative stress results in activation of several signal transduction pathways controlled by the PERK-substrate NRF2 (nuclear factor erythroid 2-related factor 2); meanwhile the ongoing cell division cycle has to be blocked. It has been recently shown that Cyclin D1 got immediately down-regulated via PERK pathway in response to oxidative stress leading to cell cycle arrest. However, the effect of NRF2 on cell cycle regulation has not been explored yet.
View Article and Find Full Text PDFAurora kinases as regulators of cell division have become promising therapeutic targets recently. Here we report novel, low molecular weight benzothiophene-3-carboxamide derivatives designed and optimized for inhibiting Aurora kinases. The most effective compound 36 inhibits Aurora kinases in vitro in the nanomolar range and diminishes HCT 116 cell viability blocking cytokinesis and inducing apoptosis.
View Article and Find Full Text PDFThe overexpression of AXL kinase has been described in many types of cancer. Due to its role in proliferation, survival, migration, and resistance, AXL represents a promising target in the treatment of the disease. In this study we present a novel compound family that successfully targets the AXL kinase.
View Article and Find Full Text PDFGnRH analogues are effective targeting moieties and able to deliver anticancer agents selectively into malignant tumor cells which highly express GnRH receptors. However, the quantitative analysis of GnRH analogues' cellular uptake and the investigated cell types in GnRH-based drug delivery systems are currently limited. Previously introduced, selectively labeled fluorescent GnRH I, -II and -III derivatives provide great detectability, and they have suitable chemical properties for reproducible and robust experiments.
View Article and Find Full Text PDFTargeted tumour therapy is the focus of recent cancer research. Gonadotropin-releasing hormone (GnRH) analogues are able to deliver anticancer agents selectively into tumour cells, which highly express GnRH receptors. However, the effectiveness of different analogues as targeting moiety in drug delivery systems is rarely compared, and the investigated types of cancer are also limited.
View Article and Find Full Text PDFEmerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one.
View Article and Find Full Text PDFActivating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor receptor (c-Met) gene. Although several EGFR and c-Met inhibitors have been reported, potent dual EGFR/c-Met inhibitors, which can overcome this latter resistance mechanism, have hitherto not been published and have not reached clinical trials.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) family has been well-known for more than ten years as the target of non-small lung carcinoma (NSCLC) which is one of the leading cause of mortality among the cancer types. The receptor tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib) which have been applied in the therapy, are not able to inhibit the progression of this disease perfectly because of resistance. It has been demonstrated that the amplification of mesenchymal-epithelial transition factor (c-Met) or secondary mutation of EGFR kinase causes the resistance against EGFR inhibitors in 18-20 percent of the cases.
View Article and Find Full Text PDF