We tested the hypothesis that, in the amphibian Xenopus laevis, cocaine- and amphetamine-regulated transcript peptide (CARTp) not only has widespread actions in the brain but also acts as a local factor in endocrine pituitary cells and/or is neurohemally secreted into the circulation to control peripheral targets. CARTp-immunoreactive cells occur in the olfactory bulb, nucleus accumbens, amygdala, septum, striatum, nucleus of Bellonci, ventrolateral nucleus, central thalamic nucleus, preoptic nuclei, and suprachiasmatic nucleus, and particularly in the medial pallium, ventromedial nucleus, hypothalamus, Edinger-Westphal nucleus, optic tectum, raphe nuclei, central gray, nucleus of the solitary tract, and spinal cord. From the hypothalamic magnocellular nucleus, CARTp-containing axons run to the neurohemal median eminence, and to the neural pituitary lobe to form neurohemal terminals, as shown by immunoelectron microscopy.
View Article and Find Full Text PDFThe distribution of cocaine- and amphetamine-regulated transcript peptide (CARTp)- like immunoreactivity was studied only in the rat central nervous system (CNS). In mammals, CART peptides occur among others in brain areas that control feeding behavior. We mapped CARTp-immunoreactive structures in the CNS of the frog Rana esculenta and assumed that differences may exist in the CARTp-containing neuronal populations between the frog, which does not feed in winter, and the rat.
View Article and Find Full Text PDFCorticotropin-releasing factor (CRF), sauvagine, and urotensin I are all members of the so-called CRF neuropeptide family. Urocortin (Ucn), a 40-amino-acid neuropeptide recently isolated from the rat brain, is the newest member of this family. Until now, the distribution of Ucn in the central nervous system (CNS) has been studied only in placental mammals.
View Article and Find Full Text PDFThe distribution of salmon and rat melanin-concentrating hormone (MCH)-like and neuropeptide glutamate-isoleucine (NEI)-like immunoreactivity in the brain and spinal cord of the frog Rana esculenta was studied with immunohistochemistry. In the telencephalon, only fibers showed immunoreactivity in the olfactory bulb, lateral pallium, diagonal band, septum, and the amygdala. Immunoreactive fibers were abundant in all diencephalic structures, except the optic tract, the visual neuropils, and the habenula.
View Article and Find Full Text PDF