Publications by authors named "Gyuchull Han"

Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe TFTs is sought.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) field-effect transistor (FET)-based biosensors have attracted significant attention as promising candidates for highly sensitive, label-free biomolecule detection devices. In this paper, toward practical applications of biosensors, we demonstrate reliable and quantitative detection of a prostate cancer biomarker using the MoS FET biosensor in a nonaqueous environment by reducing nonspecific molecular binding events and realizing uniform chemisorption of anti-PSA onto the MoS surface. A systematic and statistical study on the capability of the proposed device is presented, and the biological binding events are directly confirmed and characterized through intensive structural and electrical analysis.

View Article and Find Full Text PDF

Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min.

View Article and Find Full Text PDF

Local-gate multilayer MoS2 phototransistors exhibit a photoresponsivity of up to 342.6 A W(-1) , which is higher by 3 orders of magnitude than that of global-gate multilayer MoS2 phototransistors. These simulations indicate that the gate underlap is critical for the enhancement of the photoresponsivity.

View Article and Find Full Text PDF