Oxygen evolution reaction (OER) is widely recognized as a bottleneck in the kinetics and activity of decomposition water. Unique geometric design and compositional regulation are important technologies for achieving significant activity and excellent kinetics, but they continue to face obstacles in reaction thermodynamics and kinetic response. Here, a "needle mushroom" shaped Cu2O-NiCo2O4 heterostructure with abundant active sites and optimized conductivity that is grown on the Nickel-foam (NF) (labeled as Cu2O-NiCo2O4/NF-2) is prepared using advanced magnetron sputtering strategies for electrochemical water oxidation.
View Article and Find Full Text PDFGiven the rapidly increasing energy demand and environmental pollution, to achieve energy conservation and emission reduction, hydrogen production has emerged as a promising alternative to traditional fossil fuels because of its high gravimetric energy density, and renewable and environmentally friendly characteristics. Herein, a core-shell hollow-sphere FeO@FeP@nitrogen-doped-carbon (labeled as H-FeO@FeP@NC) with a dual-interface, novel morphology, and superior conductivity is prepared as an advanced bi-functional electrocatalyst for electrochemical overall water splitting using a collaborative strategy comprising of facile self-assembly and phosphating. The prepared catalyst exhibits superior electrocatalytic activity compared to H-FeO@NC and H-FeO for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).
View Article and Find Full Text PDFBiological invasions are known to cause local extinctions on islands. Dok-do, a small, remote volcanic island in the East Sea of Korea in the western Pacific, has recently been invaded by rats, posing ecological problems. To infer their origin and invasion pathway, we collected rats from Dok-do and from the potential introduction source locations, Ulleung-do in the Pacific Ocean, and four east coastal ports.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.