Publications by authors named "Gyu Tae Lim"

Motivation: Predicting drug response is critical for precision medicine. Diverse methods have predicted drug responsiveness, as measured by the half-maximal drug inhibitory concentration (IC50), in cultured cells. Although IC50s are continuous, traditional prediction models have dealt mainly with binary classification of responsiveness.

View Article and Find Full Text PDF

This study was to assess the possibility of using competitive and slow binding experiments with affinity-based ultrafiltration UPLC-QTof-MS analysis to identify potent bacterial neuraminidase (bNA) inhibitors from the Broussonetia papyrifera roots extract. To isolate unbound compounds from the enzyme-binding complex, the root bark extracts were either incubated in the absence of bNA, in the presence of bNA, or with the time-dependent bNA before the ultrafiltration was performed. Thirteen flavonoids were separated from the target extract, and their inhibitory activities were tested against bNA.

View Article and Find Full Text PDF
Article Synopsis
  • Dysregulation of calcium ion homeostasis and abnormal protein aggregation are key factors in the degeneration of motor neurons in ALS.
  • Mutations in annexin A11, identified in various ALS patients, are linked to increased protein aggregation and altered calcium responses, suggesting their role in disease progression.
  • The presence of these mutations leads to abnormal interactions in motor neuron cells, contributing to neuronal apoptosis and highlighting potential mechanisms behind ALS pathogenesis.
View Article and Find Full Text PDF

Heterogeneity in intratumoral cancers leads to discrepancies in drug responsiveness, due to diverse genomics profiles. Thus, prediction of drug responsiveness is critical in precision medicine. So far, in drug responsiveness prediction, drugs' molecular "fingerprints", along with mutation statuses, have not been considered.

View Article and Find Full Text PDF

One of the major neurodegenerative features of Alzheimer's disease (AD) is the presence of neurotoxic amyloid plaques composed of amyloid beta peptide (Aβ). β-Secretase (BACE1) and acetylcholinesterase (AChE), which promote Aβ fibril formation, have become attractive therapeutic targets for AD. P-glycoprotein (P-gp), the major efflux pump of the blood-brain barrier (BBB), plays a critical role in limiting therapeutic molecules.

View Article and Find Full Text PDF

The inhibition of α-glucosidase is used as a key clinical approach to treat type 2 diabetes mellitus and thus, we assessed the inhibitory effect of α-ketoglutaric acid (AKG) on α-glucosidase with both an enzyme kinetic assay and computational simulations. AKG bound to the active site and interacted with several key residues, including ASP68, PHE157, PHE177, PHE311, ARG312, TYR313, ASN412, ILE434 and ARG439, as detected by protein-ligand docking and molecular dynamics simulations. Subsequently, we confirmed the action of AKG on α-glucosidase as mixed-type inhibition with reversible and rapid binding.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is a highly heterogeneous disease with few "targeted" therapeutic options. Previously, we demonstrated involvement of the transcription factor HNF4α in human GC tumours, and the developmental signal mediator, WNT5A, as a prognostic GC biomarker. One previously developed HNF4α antagonist, BI6015, while not advancing beyond preclinical stages, remains useful for studying GC.

View Article and Find Full Text PDF

Mitochondrial dysfunction and subsequent enhanced oxidative stress is implicated in the pathogenesis of autism spectrum disorder (ASD). Mitochondrial transcription factor B2 (TFB2M) is an essential protein in mitochondrial gene expression. No reports have described TFB2M mutations and variations involved in any human diseases.

View Article and Find Full Text PDF

Pyrogallol is naturally found in aquatic plant and has been proposed as a substrate of tyrosinase. In this study, we evaluated the dual effect of pyrogallol on tyrosinase as an inhibitor in the presence of L‑DOPA simultaneously via integrating methods of enzyme kinetics and computational molecular dynamics (MD) simulations. Pyrogallol was found to be a reversible inhibitor of tyrosinase in the presence of L‑DOPA and its induced mechanism was the parabolic non-competitive inhibition type (IC = 0.

View Article and Find Full Text PDF

Methanol dehydrogenase (MDH), an NAD-dependent oxidoreductase, reversibly converts formaldehyde to methanol. This activity is a key step for both toxic formaldehyde elimination and methanol production in bacterial methylotrophy. We mutated decameric Bacillus methanolicus MDH by directed evolution and screened mutants for increased formaldehyde reduction activity in Escherichia coli.

View Article and Find Full Text PDF

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease, distinctively characterized by senile plaques, neurofibrillary tangles, and synaptic loss, finally resulting in neuronal death. β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) and cholinesterases have been identified as therapeutic targets for AD, and the discovery of their inhibitors is of critical importance for developing preventive strategies for AD. To discover natural multi-target compounds possessing BACE1, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibitory properties, major citrus flavanones including hesperetin, naringenin, and hesperidin were evaluated.

View Article and Find Full Text PDF

Inhibition of α-glucosidase is directly associated with treatment of type 2 diabetes. In this regard, we conducted enzyme kinetics integrated with computational docking simulation to assess the inhibitory effect of raspberry ketone (RK) on α-glucosidase. RK bound to the active site of α-glucosidase and interacted with several key residues such as ASP68, TYR71, HIS111, PHE157, PHE158, PHE177, GLN181, ASP214, THR215, ASP349, ASP408, and ARG439, as detected by protein-ligand docking simulation.

View Article and Find Full Text PDF

In this study we conducted serial kinetic studies integrated with computational simulations to judge the inhibitory effect of pyrogallol on α-glucosidase, due to the association between this enzyme and the treatment of type 2 diabetes. As a result, we found that pyrogallol bound to the active site of α-glucosidase, interacting with several key residues, such as ASP68, MET69, TYR71, PHE157, PHE158, PHE177, GLN181, HIS348, ASP349, ASP406, VAL407, ASP408, ARG439, and ARG443, which was predicted by performing a protein-ligand docking simulation. Subsequently, we evaluated the inhibitory effect of pyrogallol on α-glucosidase, and found that it induced a mixed type of inhibition in a reversible and quick-binding manner.

View Article and Find Full Text PDF

Unlabelled: Protein structure refinement is a necessary step for the study of protein function. In particular, some nuclear magnetic resonance (NMR) structures are of lower quality than X-ray crystallographic structures. Here, we present NMRe, a web-based server for NMR structure refinement.

View Article and Find Full Text PDF