Publications by authors named "Gyorgy Thalmaier"

The aim of this study is to analyze the effect of the addition of TiO nanoparticles (NTs) on the physical and mechanical properties, as well as the microstructural changes, of cementitious composites containing partially substituted natural aggregates (NAs) with aggregates derived from the following four recycled materials: glass (RGA), brick (RGB), blast-furnace slag (GBA), and recycled textolite waste with WEEE (waste from electrical and electronic equipment) as the primary source (RTA), in line with sustainable construction practices. The research methodology included the following phases: selection and characterization of raw materials, formulation design, experimental preparation and testing of specimens using standardized methods specific to cementitious composite mortars (including determination of apparent density in the hardened state, mechanical strength in compression, flexure, and abrasion, and water absorption by capillarity), and structural analysis using specialized techniques (scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDS)). The analysis and interpretation of the results focused primarily on identifying the effects of NT addition on the composites.

View Article and Find Full Text PDF

The use of waste from industrial activities is of particular importance for environmental protection. Fly ash has a high potential in the production of construction materials. In the present study, the use of fly ash in the production of geopolymer paste and the effect of FeO, MgO and molarity of NaOH solution on the mechanical strength of geopolymer paste are presented.

View Article and Find Full Text PDF

This paper presents the usage of spark plasma sintering (SPS) as a method to obtain aluminum-expanded perlite syntactic foams with high porosity. In the test samples, fine aluminum powder with flaky shape particles was used as matrix material and natural, inorganic, granular, expanded perlite was used as a space holder to ensure high porosity (35−57%) and uniform structure. SPS was used to consolidate the specimens.

View Article and Find Full Text PDF

Our aim was to investigate the feasibility of using limestone waste resulting from stone processing for the manufacturing of fired clay bricks. Waste materials were considered as a partial replacement for clays to reduce the exploitation of natural resources and as a response to the climate neutrality commitments. The samples were prepared to have a waste content of up to 15% and were fired at a temperature of 900 °C.

View Article and Find Full Text PDF

Masonry units made of clay or Autoclaved Aerated Concrete (AAC) are widely used in constructions from Romania and other countries. Masonry units with superior mechanical and thermal characteristics can improve the energy efficiency of buildings, especially when they are used as the main solutions for building envelope construction. Their production in recent years has increased vertiginously to meet the increased demand.

View Article and Find Full Text PDF

The present work examines an innovative manufacturing technique for fired clay bricks, using tuff as a secondary raw material. Samples were made of clay and tuff (0-30 wt.%) fired at 900 to 1100 °C.

View Article and Find Full Text PDF