Upgrading the productivity of nanoparticles (NPs), generated by pulsed laser ablation in liquid (PLAL), still remains challenging. Here a novel variant of PLAL was developed, where a doubled frequency Nd:YAG laser beam (532 nm, ∼5 ns, 10 Hz) at different fluences and for different times was directed into a sealed vessel, toward the interface of the meniscus of ethanol with a tilted bulk metal target. Palladium, copper and silver NPs, synthesized in the performed proof of concept experiments, were mass quantified, by inductively coupled plasma optical emission spectrometry, and characterized by ultraviolet-visible extinction spectroscopy, transmission electron microscopy and x-ray diffraction.
View Article and Find Full Text PDFNanoparticles (NPs) of copper, palladium and CuPd alloy have been prepared by pulsed laser ablation/irradiation in ethanol, by the second harmonic of a pulsed Nd : YAG laser (532 nm, ∼5 ns, 10 Hz). The monometallic NPs were synthesized by laser ablation of pure bulk targets immersed in ethanol and the alloyed ones by laser irradiation of stirred mixtures of suspended monometallic colloids. The suspensions were irradiated through two distinctive configurations, including lateral collimated and top focused beams that reached the corresponding fluences for NPs vaporization and for extensive plasma formation.
View Article and Find Full Text PDF