Publications by authors named "Gymama Slaughter"

C-reactive protein (CRP) is a critical biomarker for detecting inflammation and forecasting cardiovascular disease. We present an advanced electrochemical immunosensor utilizing laser-induced graphene (LIG)/MXene-gold nanoparticles (Mx-AuNPs) electrode for CRP detection. The Mx-AuNPs nanocomposite, synthesized via in-situ reduction of HAuCl by MXene, leverages MXene's reducing properties for effective nanoparticle deposition, confirmed through scanning electron microscopy.

View Article and Find Full Text PDF

Cancer is the second leading cause of death globally, with 9.7 million fatalities in 2022. While routine screenings are vital for early detection, healthcare disparities persist, highlighting the need for equitable solutions.

View Article and Find Full Text PDF

The global prevalence of skin disease and injury is continually increasing, yet conventional cell-based models used to study these conditions do not accurately reflect the complexity of human skin. The lack of inadequate modeling has resulted in reliance on animal-based models to test pharmaceuticals, biomedical devices, and industrial and environmental toxins to address clinical needs. These models are monetarily and morally expensive and are poor predictors of human tissue responses and clinical trial outcomes.

View Article and Find Full Text PDF

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR).

View Article and Find Full Text PDF

In this work, a low power microcontroller-based near field communication (NFC) interfaced with a flexible abiotic glucose hybrid fuel cell is designed to function as a battery-less glucose sensor. The abiotic glucose fuel cell is fabricated by depositing colloidal platinum (co-Pt) on the anodic region and silver oxide nanoparticles-multiwalled carbon nanotubes (AgO-MWCNTs) composite on the cathodic region. The electrochemical behavior is characterized using cyclic voltammetry and chronoamperometry.

View Article and Find Full Text PDF

In this work, we report a wafer-scale and chemical-free fabrication of nickel (Ni) and copper (Cu) heteroatomic Cu-Ni thin films using RF magnetron sputtering technique for non-enzymatic glucose sensing application. The as-prepared wafer-scale Cu-Ni thin films exhibits excellent electrocatalytic activity toward glucose oxidation with a 1.86 μM detection limit in the range of 0.

View Article and Find Full Text PDF

A tapered optical fiber (TOF) plasmonic biosensor was fabricated and used for the sensitive detection of a panel of microRNAs (miRNAs) in human serum obtained from noncancer and prostate cancer (PCa) patients. Oncogenic and tumor suppressor miRNAs , , miR-200b, miR-141, and miR-21 were tested as predictive cancer biomarkers since multianalyte detection minimizes false-positive and false-negative rates and establishes a strong foundation for early PCa diagnosis. The biosensing platform integrates metallic gold triangular nanoprisms (AuTNPs) laminated on the TOF to excite surface plasmon waves in the supporting metallic layer and enhance the evanescent mode of the fiber surface.

View Article and Find Full Text PDF

Fully integrated uric acid (UA) and glucose biosensors were fabricated on polydimethylsiloxane/polyimide platform by facile one step laser scribed technique. The laser scribed graphene (LSG) on the thin polyimide film was functionalized using pyrenebutanoic acid, succinimide ester (PBSE) to improve the electrochemical activity of the biosensors. The LSG was further decorated with platinum nanoparticles (PtNPs) to promote the electrocatalytic activity towards the oxidation of UA.

View Article and Find Full Text PDF

We designed and fabricated a novel label-free ultrasensitive tapered optical fiber (TOF) plasmonic biosensor that successfully detected a five panel of microRNAs with good selectivity. The biosensing platform integrates three different metallic nanoparticles: gold spherical nanoparticles (AuNPs), gold nanorods (AuNRs), and gold triangular nanoprisms (AuTNPs) laminated TOF to enhance the evanescent mode. The dip in the intensity profile of the transmission spectrum corresponded to the specific wavelength of the nanoparticle.

View Article and Find Full Text PDF

Neurotransmitters are important chemical messengers in the nervous system that play a crucial role in physiological and physical health. Abnormal levels of neurotransmitters have been correlated with physical, psychotic, and neurodegenerative diseases such as Alzheimer's, Parkinson's, dementia, addiction, depression, and schizophrenia. Although multiple neurotechnological approaches have been reported in the literature, the detection and monitoring of neurotransmitters in the brain remains a challenge and continues to garner significant attention.

View Article and Find Full Text PDF

A cost-effective portable glucose monitoring system with remote data access based on a novel e-oscilloscope was developed using a glucose biofuel cell and a capacitor circuit interfaced to an ESP8266 microcontroller programmed to convert the charge/discharge rates of the capacitor functioning as a transducer. The capacitor charge/discharge rates were converted into glucose concentration readings that is monitored remotely. The glucose monitoring system comprise a glucose biofuel cell, a charge pump circuit, a capacitor and an ESP microcontroller.

View Article and Find Full Text PDF

The performance of bioelectrodes in enzymatic glucose biofuel cell is not only dependent on the enzyme immobilization schemes but it is greatly influenced by the ability of the enzyme to exhibit favorable orientation for a direct electron transfer (DET) between the enzyme and the current collector. The electrochemical investigation of chitosan and nafion-chitosan coatings on multi-walled carbon nanotubes (MWCNTs) immobilized with pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively revealed interesting operational stability performance for the enzymatic biofuel cells. The bioelectrodes operated in DET mode and the chitosan coated biofuel cell system overall demonstrated higher power (156 μW) output.

View Article and Find Full Text PDF

Here we present a cost-effective point-of-use wireless platform for the electrochemical detection of low concentrations of glucose and hydrogen peroxide (HO), simultaneously. The electrochemical system utilizes a dual sensor integrated with a portable bipotentiostat. The bipotentiostat hardware implements a basic designed that reduces the cost of construction and increase the affordability of the instrument, while providing similar functionality as the more expensive bench-top potentiostats.

View Article and Find Full Text PDF

Herein, we report on a hybrid fuel cell using electrodeposited multi-walled carbon nanotubes (MWCNTs) as a bioanode template for the immobilization of pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and electrodeposited platinized screen printed carbon nanotubes as the cathode. By depositing these nanostructures, high surface area is realized, wherein efficient direct electron transfer and excellent bioelectrocatalytic performance is achieved. The hybrid fuel cell comprised Nafion/PQQ-GDH/MWCNTs as the bioanode and a platinized carbon as the cathode to oxidize the glucose fuel and reduce oxygen, respectively.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play crucial roles in regulating gene expression. Many studies show that miRNAs have been linked to almost all kinds of disease. In addition, miRNAs are well preserved in a variety of specimens, thereby making them ideal biomarkers for biosensing applications when compared to traditional protein biomarkers.

View Article and Find Full Text PDF

We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge cycle, which is directly correlated to the glucose concentration.

View Article and Find Full Text PDF

Herein, we report the development of a sensitive and selective dual mode electrochemical platform for the detection of glucose and HO. The platform is based on tungsten and gold microwire electrodes decorated with gold nanoparticles (AuNPs) and colloidal platinum (colloidal-Pt), respectively. The nanostructured AuNPs electrode was used as a support matrix for the immobilization of horseradish peroxidase (HRP) and the colloidal-Pt served as the non-enzymatic glucose biosensor in the construction of a dual in-line electrochemical biosensor that provides a microenvironment for HRP and a pathway for analyte diffusion via the high surface area.

View Article and Find Full Text PDF

The present study evaluates the crosslinking of electrospun gelatin nanofibers by physical and chemical methods to further elucidate the importance of the application of gelatin scaffold platforms for cell-based assays. The dehydrothermally cross-linked electrospun gelatin scaffolds were unable to retained their structure morphology and integrity upon exposure to 1X PBS or cell-culture media. The DHT and EDC/Sulfo-NHS cross-linked gelatin scaffolds exhibited fiber diameter on average in the nanometer range.

View Article and Find Full Text PDF

Hydrogen peroxide ($\text{H}_{\mathbf {2}} \mathbf {O} _{\mathbf {2}}$) plays a critical role in the regulation of multifarious physiological processes. We developed a sensor containing a mercaptopropionic acid (MPA) monolayer covalently immobilized with Horseradish peroxidase (HRP) enzyme for the electrochemical detection of hydrogen peroxide ($\textbf{H}_{\mathbf {2}} \mathbf {O} _{\mathbf {2}}$). A gold foil substrate was chemically treated with nitric acid and were used as working electrode.

View Article and Find Full Text PDF

Carbon nanotube (CNT)-cellulose pellicle was developed to create a conductive CNT network on 20 μm nanostructured cellulose film. The flexible and electrically conductive film was prepared by the modification of bacterial nanocellulose pellicle with multi-walled carbon nanotubes (MWCNTs). The composite film was further modified with redox enzymes including pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BODx) functioning as the anodic and cathodic catalyst, respectively with glucose as the biofuel source.

View Article and Find Full Text PDF

A hybrid biofuel cell (HBFC) is explored as a low-cost alternative to abiotic and enzymatic biofuel cells. Here the HBFC provides an enzymeless approach for the fabrication of the anodic electrode while employing an enzymatic approach for the fabrication of the cathodic electrode to develop energy harvesting platform to power bioelectronic devices. The anode employed 250 μm braided gold wire modified with colloidal platinum (Au-co-Pt) and bilirubin oxidase (BODx) modified gold coated Buckypaper (BP-Au-BODx) cathode.

View Article and Find Full Text PDF

With the rapid development of biomimetic polymers for cell-based assays and tissue engineering, crosslinking electrospun nanofibrous biopolymer constructs is of great importance for achieving sustainable and efficient three-dimensional scaffold constructs. Uncrosslinked electrospun gelatin nanofibrous constructs immediately and completely dissolved in aqueous solutions due to their aqueous solubility and poor storage stability. Here, a novel and versatile approach for the fabrication and crosslinking of electrospun gelatin construct with tunable porosity and high aspect ratio nanofibers is presented.

View Article and Find Full Text PDF

A novel biosensing system capable of simultaneously sensing glucose and powering portable electronic devices such as a digital glucometer is described. The biosensing system consists of enzymatic glucose biofuel cell bioelectrodes functionalized with pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively. A dual-stage power amplification circuit is integrated with the single biofuel cell to amplify the electrical power generated.

View Article and Find Full Text PDF

Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement.

View Article and Find Full Text PDF

Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored.

View Article and Find Full Text PDF