Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies.
View Article and Find Full Text PDFIt is essential to remediate or amend soils contaminated with various heavy metals or pollutants so that the soils may be used again safely. Verifying that the remediated or amended soils meet soil quality standards is an important part of the process. We estimated the activity levels of eight soil exoenzymes (acid phosphatase, arylsulfatase, catalase, dehydrogenase, fluorescein diacetate hydrolase, protease, urease, and ß-glucosidase) in contaminated and remediated soils from two sites near a non-ferrous metal smelter, using colorimetric and titrimetric determination methods.
View Article and Find Full Text PDFWhole-cell bioreporters (WCBs) have attracted increasing attention during the last few decades because they allow fast determination of bioavailable heavy metals in contaminated sites. Various WCBs to monitor specific heavy metals such as arsenic and cadmium in diverse environmental systems are available. However, currently, no study on simultaneous analysis of arsenic and cadmium has been reported, even though soils are contaminated by diverse heavy metals and metalloids.
View Article and Find Full Text PDF