Publications by authors named "Gyeongah Park"

Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates.

View Article and Find Full Text PDF

Effective emotional regulation, crucial for adaptive behavior, is mediated by the medial prefrontal cortex (mPFC) via connections to the basolateral amygdala (BLA) and nucleus accumbens (NAc), traditionally considered functionally similar in modulating reward and aversion responses. However, how the mPFC balances these descending pathways to control behavioral outcomes remains unclear. We found that while overall firing patterns appeared consistent across emotional states, deeper analysis revealed distinct variabilities.

View Article and Find Full Text PDF

Following a stroke, the emergence of amygdala-related disorders poses a significant challenge, with severe implications for post-stroke mental health, including conditions such as anxiety and depression. These disorders not only hinder post-stroke recovery but also elevate mortality rates. Despite their profound impact, the precise origins of aberrant amygdala function after a stroke remain elusive.

View Article and Find Full Text PDF

Neuronal activity promotes high-grade glioma progression via secreted proteins and neuron-to-glioma synapses, and glioma cells boost neuronal activity to further reinforce the malignant cycle. Whereas strong evidence supports that the activity of neuron-to-glioma synapses accelerates tumor progression, the molecular mechanisms that modulate the formation and function of neuron-to-glioma synapses remain largely unknown. Our recent findings suggest that a proton (H ) signaling pathway actively mediates neuron-to-glioma synaptic communications by activating neuronal acid-sensing ion channel 1a (Asic1a), a predominant H receptor in the central nervous system (CNS).

View Article and Find Full Text PDF

Following a stroke, the emergence of amygdala-related disorders poses a significant challenge, with severe implications for post-stroke mental health, including conditions such as anxiety and depression. These disorders not only hinder post-stroke recovery but also elevate mortality rates. Despite their profound impact, the precise origins of aberrant amygdala function after stroke remain elusive.

View Article and Find Full Text PDF

Dynamin-related protein 1 (Drp1)-mediated mitochondrial dysfunction is associated with synaptic injury in the diabetic brain. However, the dysfunctional mitochondria by Drp1 deletion in the diabetic brain are poorly understood. Here, we investigated the effects of neuron-specific Drp1 deletion on synaptic damage and mitophagy in the hippocampus of a high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice.

View Article and Find Full Text PDF

Obesity-induced adipocyte apoptosis promotes inflammation and insulin resistance. Src homology domain-containing inositol 5'-phosphatase 1 (SHIP1) is a key factor of apoptosis and inflammation. However, the role of SHIP1 in obesity-induced adipocyte apoptosis and autophagy is unclear.

View Article and Find Full Text PDF