The original version of this Article contained an error in the Data Availability section, which incorrectly read 'The data that support the findings of this study are available from the corresponding authors upon request.' The correct version replaces this sentence with 'The research data underpinning this publication can be accessed at https://doi.org/10.
View Article and Find Full Text PDFNucleation of nanoparticles using the exsolution phenomenon is a promising pathway to design durable and active materials for catalysis and renewable energy. Here, we focus on the impact of surface orientation of the host lattice on the nucleation dynamics to resolve questions with regards to "preferential nucleation sites". For this, we carried out a systematic model study on three differently oriented perovskite thin films.
View Article and Find Full Text PDFNanoparticles formed on oxide surfaces are of key importance in many fields such as catalysis and renewable energy. Here, we control B-site exsolution via lattice strain to achieve a high degree of exsolution of nanoparticles in perovskite thin films: more than 1100 particles μm with a particle size as small as ~5 nm can be achieved via strain control. Compressive-strained films show a larger number of exsolved particles as compared with tensile-strained films.
View Article and Find Full Text PDFMiniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS.
View Article and Find Full Text PDF