Highly pathogenic avian influenza H5N6 and H5N1 viruses of clade 2.3.4.
View Article and Find Full Text PDFH5, H7 and H9 are the major subtypes of avian influenza virus (AIV) that cause economic losses in the poultry industry and sporadic zoonotic infection. Early detection of AIV is essential for preventing disease spread. Therefore, molecular diagnosis and subtyping of AIV via real-time RT-PCR (rRT-PCR) is preferred over other classical diagnostic methods, such as egg inoculation, RT-PCR and HI test, due to its high sensitivity, specificity and convenience.
View Article and Find Full Text PDFThe introduction of novel highly pathogenic (HPAI) viruses into Korea has been attributed to recombination events occurring at breeding sites in the Northern Hemisphere. This has increased interest in monitoring and genetically analyzing avian influenza viruses (AIVs) in northern regions, such as Mongolia, which share migratory bird flyways with Korea. AIVs in Mongolia were monitored by analyzing 10,149 fecal samples freshly collected from wild birds from April to October in 2021 to 2023.
View Article and Find Full Text PDFSince the 2000s, the Y439 lineage of H9N2 avian influenza virus (AIV) has been the predominant strain circulating in poultry in Korea; however, in 2020, the Y280 lineage emerged and spread rapidly nationwide, causing large economic losses. To prevent further spread and circulation of such viruses, rapid detection and diagnosis through active surveillance programs are crucial. Here, we developed a novel H9 rRT-PCR assay that can detect a broad range of H9Nx viruses in situations in which multiple lineages of H9 AIVs are co-circulating.
View Article and Find Full Text PDFWild bird avian influenza type A virus (AIV) surveillance is important for the early detection of highly pathogenic AIVs and for providing early warnings to the poultry industry and veterinary services to implement more effective control measures against these viruses. Some field samples are often found to contain more than two kinds of AIV. Correct determination of the HA/NA subtype and complete nucleotide sequences of the component viruses in those samples are often critical for timely and accurate understanding of the field situation, but it is not easy to define the genomic structure of the constituent viruses unambiguously because AIV has eight segmented genomes.
View Article and Find Full Text PDFHigh pathogenicity avian influenza (HPAI) viruses of clade 2.3.4.
View Article and Find Full Text PDFFor the early detection of avian influenza virus (AIV), molecular diagnostic methods such as real-time RT-PCR (rRT-PCR) are the first choice in terms of accuracy and speed in many countries. A laboratory's capability to perform this diagnostic method needs to be measured through external and independent assessment to ensure that the method is validated within the laboratory and in interlaboratory comparison. The Animal and Plant Quarantine Agency of Korea has implemented five rounds of proficiency testing (PT) for rRT-PCR targeting local veterinary service laboratories involved in the AIV national surveillance program from 2020 to 2022.
View Article and Find Full Text PDFSince its first appearance in 1996, H9N2 avian influenza virus (AIV) of the Y439 lineage persisted in Korean live bird markets (LBMs) until the last documented occurrence in 2018. However, in June 2020, the avian influenza surveillance program detected a novel H9N2 AIV belonging to the Y280 lineage, which has zoonotic potential, in a Korean native chicken (KNC) from a LBM. In this study, we infected KNCs and ducks (the 2 major species held at LBMs), as well as SPF chickens, with Y280-lineage H9N2 AIV LBM261/20 and Y439-equivalent LBM294/18 to compare pathogenicity and transmissibility.
View Article and Find Full Text PDFDuring October 2020-January 2021, we isolated a total of 67 highly pathogenic avian influenza (HPAI) H5N8 viruses from wild birds and outbreaks in poultry in South Korea. We sequenced the isolates and performed phylogenetic analysis of complete genome sequences to determine the origin, evolution, and spread patterns of these viruses. Phylogenetic analysis of the hemagglutinin (HA) gene showed that all the isolates belong to H5 clade 2.
View Article and Find Full Text PDFIn this study, we describe the isolation and characterization of previously unreported Y280-lineage H9N2 viruses from two live bird markets in Korea in June 2020. Genetic analysis revealed that they were distinct from previous H9N2 viruses circulating in Korea and had highest homology to A/chicken/Shandong/1844/2019(H9N2) viruses. Their genetic constellation showed they belonged to genotype S, which is the predominant genotype in China since 2010, where genotype S viruses have infected humans and acted as internal gene donors to H5 and H7 zoonotic influenza viruses.
View Article and Find Full Text PDFH5 and H7 subtypes of low pathogenic avian influenza viruses (LPAIVs) can mutate to highly pathogenic forms and are therefore subject to stringent controls. We characterized H5 LPAIVs isolated from wild-bird habitats and duck farms in South Korea from 2010 to 2017. Through nationwide active surveillance for AIVs, 59 H5 LPAIVs were isolated from wild-bird habitats (a mean annual rate of 5.
View Article and Find Full Text PDFIn 2016, novel H5N6 highly pathogenic avian influenza virus emerged in Korea. During the outbreak, the virus caused the largest culling, especially in brown chicken lines. We determined the pathogenicity and transmissibility of the virus in 2 white chicken lines of the specific pathogen-free chickens, broilers and brown chicken line of Korean native chicken (KNC).
View Article and Find Full Text PDFEmerg Infect Dis
December 2018
In December 2016, highly pathogenic avian influenza (HPAI) infection with systemic pathologic lesions was found in cats in South Korea. Genetic analyses indicated that the feline isolates were similar to HPAI H5N6 viruses isolated in chicken farms nearby. This finding highlights the need for monitoring of domestic mammals during HPAI outbreaks.
View Article and Find Full Text PDFIn this study, we characterized H7 subtype low-pathogenicity (LP) influenza A viruses (IAVs) isolated from wild bird habitats in the Republic of Korea from 2010 to early 2017. Through national surveillance, 104 H7 IAVs were isolated, accounting for an average of 14.9% of annual IAV isolations.
View Article and Find Full Text PDFAvian influenza viruses (AIVs) are genetically separated by geographical barriers, resulting in the independent evolution of North American and Eurasian lineages. In the present study, to determine whether AIVs possessing the North American-origin nonstructural (NS) gene were previously introduced into South Korea, we performed a genetic analysis of AIVs isolated from fecal samples of migratory birds. We detected seven viruses possessing the North American-origin NS allele B among 413 AIV-positive samples obtained during AI surveillance between 2012 and 2017.
View Article and Find Full Text PDFNovel H5N6 highly pathogenic avian influenza viruses (HPAIVs) were isolated from duck farms and migratory bird habitats in South Korea in November to December 2017. Genetic analysis demonstrated that at least two genotypes of H5N6 were generated through reassortment between clade 2.3.
View Article and Find Full Text PDFDuring 2014–2016 HPAI outbreak in South Korea, H5N8 viruses have been mostly isolated in western areas of the country, which provide wintering habitats for wild birds and have a high density of poultry. Analysis of a total of 101 Korean isolates revealed that primitive H5N8 viruses (C0 group) have evolved into multiple genetic subgroups appearing from various epidemiological sources, namely, the viruses circulating in poultry farms (C1 and C5) and those reintroduced by migratory birds in late 2014 (C2 and C4). No C3 groups were detected.
View Article and Find Full Text PDFWe report the identification of novel highly pathogenic avian influenza viruses of subtype H5N6, clade 2.3.4.
View Article and Find Full Text PDFA highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in poultry and wild birds in South Korea in January 2014. Here, we determined the pathogenicity and transmissibility of three different clades of H5 viruses in mandarin ducks to examine the potential for wild bird infection. H5N8 (clade 2.
View Article and Find Full Text PDF