Publications by authors named "Gwyneth F Boyer"

Methylation greatly influences the bacterial genome by guiding DNA repair and regulating pathogenic and stress-response phenotypes. But, the rate of epigenetic changes and their consequences on molecular phenotypes are underexplored. Through a detailed characterization of genome-wide adenine methylation in a commonly used laboratory strain of , we reveal that mismatch repair deficient populations experience an increase in epimutations resulting in a genome-wide reduction of 6mA methylation in a manner consistent with genetic drift.

View Article and Find Full Text PDF

Ecotypic diversification and its associated cooperative behaviors are frequently observed in natural microbial populations whose access to resources is often sporadic. However, the extent to which fluctuations in resource availability influence the emergence of cooperative ecotypes is not fully understood. To determine how exposure to repeated resource limitation affects the establishment and long-term maintenance of ecotypes in a structured environment, we followed 32 populations of Escherichia coli evolving to either 1-day or 10-day feast/famine cycles for 900 days.

View Article and Find Full Text PDF

How microbes adapt to a novel environment is a central question in evolutionary biology. Although adaptive evolution must be fueled by beneficial mutations, whether higher mutation rates facilitate the rate of adaptive evolution remains unclear. To address this question, we cultured Escherichia coli hypermutating populations, in which a defective methyl-directed mismatch repair pathway causes a 140-fold increase in single-nucleotide mutation rates.

View Article and Find Full Text PDF