Publications by authors named "Gwo-Jyh Chang"

Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular events. However, the precise mechanisms beyond glycemic control are not fully understood. The objective of this study was to determine the role of PDGF (platelet-derived growth factor)-related signaling in empagliflozin-mediated inhibition of neointima formation.

View Article and Find Full Text PDF
Article Synopsis
  • Losing a protein called PPARγ makes a condition called pulmonary arterial hypertension (PAH) worse, but boosting it can help reduce the problem.
  • A diabetes medication called Empagliflozin (Empa) was tested and showed it can slow down the growth of bad cells in PAH.
  • Empa works by helping PPARγ to control other proteins that are involved in the disease, making it a possible new treatment for PAH.
View Article and Find Full Text PDF

The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-β)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-β specifically in cardiac tissues (TGF-β transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-β transgenic mice and AF patient tissue sections.

View Article and Find Full Text PDF

Atrial fibrillation (AF), characterized by structural remodeling involving atrial myocardial degradation and fibrosis, is linked with obesity and transforming growth factor beta 1 (TGF-β1). Aldehyde dehydrogenase 2 (ALDH2) deficiency, highly prevalent in East Asian people, is paradoxically associated with a lower AF risk. This study investigated the impact of ALDH2 deficiency on diet-induced obesity and AF vulnerability in mice, exploring potential compensatory upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1).

View Article and Find Full Text PDF

Background: The sarcoplasmic reticulum (SR) Ca ATPase (SERCA2a) depression substantially contributes to diastolic dysfunction in heart failure (HF), suggesting that SERCA2a stimulation may be a mechanism-based HF therapy. Istaroxime is a drug endowed with both a SERCA2a stimulatory activity and a Na/K pump inhibitory activity for acute HF treatment. Its main metabolite PST3093 shows a more favorable therapeutic profile as compared to the parent drug, but it is still unsuitable for chronic usage.

View Article and Find Full Text PDF

loss-of-function mutations cause long QT syndrome type 2 (LQT2), an inherited cardiac disorder associated with life-threatening ventricular arrhythmia. Through whole-exome sequencing, we discovered a novel AGCGACAC deletion (S981fs) in the gene of an LQT2 patient. Using a heterologous expression system and patch clamping, we found that the mutant K channel had reduced cell surface expression and lower current amplitude compared to the wild type.

View Article and Find Full Text PDF

Background: Sustained, chronic activation of β-adrenergic receptor (β-AR) signaling leads to cardiac arrhythmias, with exchange proteins directly activated by cAMP (Epac1 and Epac2) as key mediators. This study aimed to evaluate whether CD44, a transmembrane receptor mediating various cellular responses, participates in Epac-dependent arrhythmias.

Methods: The heart tissue from CD44 knockout (CD44) mice, cultured HL-1 myocytes and the tissue of human ventricle were used for western blot, co-immunoprecipitaiton and confocal studies.

View Article and Find Full Text PDF

Aim: Hyperphosphatemia is associated with adverse cardiovascular outcomes in both the general population and patients with end-stage renal disease. We evaluated whether high inorganic phosphate (Pi) intake causes atrial remodeling and increased atrial fibrillation (AF) risk.

Methods: The 5/6 nephrectomized chronic kidney disease (CKD) mice were fed a high-Pi (2%) diet for 10 weeks.

View Article and Find Full Text PDF

In dysfunctional arteriovenous fistulae (AVF) for hemodialysis access, neointimal hyperplasia (NH) is prone to occur in the region exposed to disturbed flow. We hypothesized that disturbed flow contributes to NH in AVF by inducing endothelial mesenchymal transition (EndMT) through activation of the osteopontin/CD44 axis. In rats with aortocaval fistula, a rodent model of AVF, we demonstrated development of EndMT and expression of osteopontin and CD44 specifically in the vicinity of the arteriovenous junction using immunostaining.

View Article and Find Full Text PDF

Heart failure (HF) therapeutic toolkit would strongly benefit from the availability of ino-lusitropic agents with a favorable pharmacodynamics and safety profile. Istaroxime is a promising agent, which combines Na/K pump inhibition with sarcoplasmic reticulum Ca ATPase (SERCA2a) stimulation; however, it has a very short half-life and extensive metabolism to a molecule named PST3093. The present work aims to investigate whether PST3093 still retains the pharmacodynamic and pharmacokinetic properties of its parent compound.

View Article and Find Full Text PDF

Platelet concentrates (PCs) are widely used in regenerative medicine; as it is produced from freeze-thawing PC, platelet lysate (PL) has a longer shelf life. The thrombotic risk of PL therapy needs to be explored since PL and PC contain cytokines that contribute to platelet aggregation and thrombus formation. Whole blood samples of 20 healthy subjects were collected; PL was produced from PCs with expired shelf life through freeze-thawing.

View Article and Find Full Text PDF

Background Cardiac hypertrophy is associated with abnormal electrophysiology and increased arrhythmia risk. This study assessed whether candesartan cilexetil, an angiotensin II type 1 receptor blocker, could suppress arrhythmogenecity by attenuating cardiac electrical remodeling and calcium mishandling in rats with pressure-overload hypertrophy. Methods and Results Male Sprague-Dawley rats were randomly subjected to abdominal aorta banding or sham procedure and received either candesartan cilexetil (3.

View Article and Find Full Text PDF

Atrial fibrosis is an essential contributor to atrial fibrillation (AF). It remains unclear whether atrial endocardial endothelial cells (AEECs) that undergo endothelial-mesenchymal transition (EndMT) are among the sources of atrial fibroblasts. We studied human atria, TGF-β-treated human AEECs, cardiac-specific TGF-β-transgenic mice, and heart failure rabbits to identify the underlying mechanism of EndMT in atrial fibrosis.

View Article and Find Full Text PDF

Derangements in cardiac energy metabolism have been shown to contribute to the development of heart failure (HF). This study combined transcriptomics and metabolomics analyses to characterize the changes and reversibility of cardiac energetics in a rat model of cardiac volume overload (VO) with the creation and subsequent closure of aortocaval fistula. Male Sprague-Dawley rats subjected to an aortocaval fistula surgery for 8 and 16 weeks exhibited characteristics of compensated hypertrophy (CH) and HF, respectively, in echocardiographic and hemodynamic studies.

View Article and Find Full Text PDF

The stimulation of sarcoplasmic reticulum calcium ATPase SERCA2a emerged as a novel therapeutic strategy to efficiently improve overall cardiac function in heart failure (HF) with reduced arrhythmogenic risk. Istaroxime is a clinical-phase IIb compound with a double mechanism of action, Na/K ATPase inhibition and SERCA2a stimulation. Starting from the observation that istaroxime metabolite PST3093 does not inhibit Na/K ATPase while stimulates SERCA2a, we synthesized a series of bioisosteric PST3093 analogues devoid of Na/K ATPase inhibitory activity.

View Article and Find Full Text PDF

Background: The increasing use of platelet-rich plasma (PRP) to treat muscle injuries raises concerns because transforming growth factor-beta (TGF-β) in PRP may promote fibrosis in the injured muscle and thus impair muscle regeneration.

Purpose: To investigate whether suramin (a TGF-β inhibitor) can reduce muscle fibrosis to improve healing of the injured muscle after PRP treatment and identify the underlying molecular mechanism.

Study Design: Controlled laboratory study.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF), a common arrhythmia in clinics, is characterized as downregulation of L-type calcium channel (LTCC) and shortening of atrial action potential duration (APD). Our prior studies have shown the association of CD44 with AF genesis.

Objective: The purpose of this study was to explore the potential role of CD44 and its related signaling in tachypacing-induced downregulation of LTCC.

View Article and Find Full Text PDF

Paraquat (PQ) is a highly lethal herbicide. Ingestion of large quantities of PQ usually results in cardiovascular collapse and eventual mortality. Recent pieces of evidence indicate possible involvement of oxidative stress- and inflammation-related factors in PQ-induced cardiac toxicity.

View Article and Find Full Text PDF

Aims: Diabetic cardiomyopathy is a multifactorial disease characterized by an early onset of diastolic dysfunction (DD) that precedes the development of systolic impairment. Mechanisms that can restore cardiac relaxation improving intracellular Ca2+ dynamics represent a promising therapeutic approach for cardiovascular diseases associated to DD. Istaroxime has the dual properties to accelerate Ca2+ uptake into sarcoplasmic reticulum (SR) through the SR Ca2+ pump (SERCA2a) stimulation and to inhibit Na+/K+ ATPase (NKA).

View Article and Find Full Text PDF

Studies have demonstrated that diabetic (db/db) mice have increased susceptibility to myocardial ischemia-reperfusion (IR) injury and ventricular tachyarrhythmias (VA). We aimed to investigate the antiarrhythmic and molecular mechanisms of ranolazine in db/db mouse hearts with acute IR injury. Ranolazine was administered for 1 week before coronary artery ligation.

View Article and Find Full Text PDF

BPC 157-activated endothelial nitric oxide synthase (eNOS) is associated with tissue repair and angiogenesis as reported in previous studies. However, how BPC 157 regulates the vasomotor tone and intracellular Src-Caveolin-1 (Cav-1)-eNOS signaling is not yet clear. The present study demonstrated a concentration-dependent vasodilation effect of BPC 157 in isolated rat aorta.

View Article and Find Full Text PDF

Aldehyde dehydrogenase 2 (ALDH2) is an enzyme that detoxifies reactive oxygen species (ROS)-generated aldehyde adducts such as 4-hydroxy-trans-2-nonenal (4-HNE). Previous meta-analyses have shown an increase in the risk of atrial fibrillation (AF) in patients with chronic alcohol consumption. , a common dysfunctional polymorphism in the gene, has been linked to an increased risk of cancer and heart disease.

View Article and Find Full Text PDF

The molecular mechanism for worsening left ventricular (LV) function after mitral valve (MV) repair for chronic mitral regurgitation remains unknown. We wished to assess the LV transcriptome and identify determinants associated with worsening LV function post-MV repair. A total of 13 patients who underwent MV repair for chronic primary mitral regurgitation were divided into two groups, preserved LV function (N = 8) and worsening LV function (N = 5), for the study.

View Article and Find Full Text PDF

Background: Skeletal muscle injuries are very common in sports medicine. Conventional therapies have limited clinical efficacy. New treatment methods should be developed to allow athletes to return to play with better function.

View Article and Find Full Text PDF