The ultraviolet (UV) weathering of microplastics (MPs) can lead to higher adsorption of harmful contaminants, thus increasing the potential risks of their combined effects. Because biodegradable MPs are more susceptible to UV weathering than conventional MPs, concerns have arisen about their ecological toxicity and environmental impact. Therefore, this study investigated the mechanisms associated with the adsorption of the pesticide diflubenzuron (DFB) onto polylactic acid (PLA) MP particles after UV weathering and the acute effects (48 h) of their combination on the water flea Daphnia magna.
View Article and Find Full Text PDFBiodegradable microplastics (MPs) can form biofilms through interactions with various microorganisms in aquatic system and can be exposed to organisms. This study first investigated biodegradability of polylactic acid (PLA) MPs and the characterization of PLA MPs before/after biofouling (4 weeks) and their toxic effects on the freshwater invertebrate Daphnia magna. The biodegradability rate of PLA MPs was up to 50% over 28 days, suggesting that even biodegradable MPs do not easily decompose under environmental conditions.
View Article and Find Full Text PDFInfochemicals refer to chemicals responsible for information exchange between organisms. We evaluated the effects of Daphnia magna and Daphnia galeata infochemicals on Microcystis aeruginosa for 15d. The Daphnia infochemicals were obtained from spent medium after culturing Daphnia in Elendt M4 medium for 48 h.
View Article and Find Full Text PDFCopper sulfate (CuSO) is actively used to control the proliferation of harmful algal blooms because of its fast and effective killing mechanism. However, its use unintentionally harms innocuous aquatic organisms. Therefore, there is a need to find non-toxic solutions for controlling algal blooms.
View Article and Find Full Text PDFEnviron Pollut
January 2022
In this study, we treated harmful Microcystis aeruginosa cyanobacteria using chitosan-modified nanobubbles. The chitosan-modified nanobubbles (255 ± 19 nm) presented a positive zeta potential (15.36 ± 1.
View Article and Find Full Text PDFButylated hydroxytoluene (BHT) is recognized as a crucial pollutant in aquatic environments, but efforts to achieve its complete removal are without success. The aim of this study was to investigate the degradation efficiency of BHT in water using ozone microbubbles (OMB), coupled with toxicity change assessment at sub-lethal BHT concentrations (0.34, 0.
View Article and Find Full Text PDFThe microbubble technique has drawn great attention for efficient utilization of ozone for advance oxidation processes. Therefore, in this study, microbubble ozonation was investigated to evaluate the removal efficiency and toxicity reduction of benzo[a]pyrene. Compared with conventional macrobubble ozonation, microbubble ozonation produced higher concentrations of hydroxyl radicals and ozone in aqueous solutions, resulting in more efficient and persistent degradation of benzo[a]pyrene.
View Article and Find Full Text PDFEnviron Sci Process Impacts
September 2017
Correction for 'Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna' by Joorim Na et al., Environ. Sci.
View Article and Find Full Text PDFEnviron Sci Process Impacts
September 2017
This study aimed to identify the source of toxicity in textile dyeing effluent collected from February to July 2016, using Daphnia magna as a test organism. Toxicity identification evaluation (TIE) procedures were used to identify the toxicants in textile dyeing effluent, and Jar testing to simulate the Fenton process was conducted to identify the source of toxicants. Textile dyeing effluent was acutely toxic to D.
View Article and Find Full Text PDF