Crop pathogens pose severe risks to global food production due to the rapid rise of resistance to pesticides and host resistance breakdowns. Predicting future risks requires monitoring tools to identify changes in the genetic composition of pathogen populations. Here we report the design of a microfluidics-based amplicon sequencing assay to multiplex 798 loci targeting virulence and fungicide resistance genes, and randomly selected genome-wide markers for the fungal pathogen Zymoseptoria tritici.
View Article and Find Full Text PDFLittle is known about the impact of host immunity on sexual reproduction in fungal pathogens. In particular, it is unclear whether crossing requires both sexual partners to infect living plant tissues. We addressed this issue in a three-year experiment investigating different scenarios of Zymoseptoria tritici crosses according to the virulence ('vir') or avirulence ('avr') of the parents against a qualitative resistance gene.
View Article and Find Full Text PDFThe wheat pathogen Zymoseptoria tritici is a relevant fungal model organism for investigations of the epidemiological determinants of sexual reproduction. The objective of this experimental study was to determine which intrinsic factors, including parental fitness and timing conditions of infection, affect the numbers of ascospores produced. We first performed 28 crosses on adult wheat plants in semi-controlled conditions, with 10 isolates characterized for their fitness traits.
View Article and Find Full Text PDF