Publications by authors named "Gwi Moon Seo"

The targeted delivery of therapeutics to the tumor site is highly desirable in cancer treatment, because it is capable of minimizing collateral damage. Herein, we report the synthesis of a nanoplatform, which is composed of a 15 ± 1 nm diameter core/shell Fe/Fe(3)O(4) magnetic nanoparticles (MNPs) and the topoisomerase I blocker SN38 bound to the surface of the MNPs via a carboxylesterase cleavable linker. This nanoplatform demonstrated high heating ability (SAR = 522 ± 40 W/g) in an AC-magnetic field.

View Article and Find Full Text PDF

Targeted gene delivery, transfection efficiency, and toxicity concerns remain a challenge for effective gene therapy. In this study, we dimerized the HIV-1 TAT peptide and formulated a nanoparticle vector (dTAT NP) to leverage the efficiency of this cell-penetrating strategy for tumor-targeted gene delivery in the setting of intratracheal administration. Expression efficiency for dTAT NP-encapsulated luciferase or angiotensin II type 2 receptor (AT2R) plasmid DNA (pDNA) was evaluated in Lewis lung carcinoma (LLC) cells cultured in vitro or in vivo in orthotopic tumor grafts in syngeneic mice.

View Article and Find Full Text PDF

Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.

View Article and Find Full Text PDF

Enzyme-activated prodrugs have been investigated and sought after as highly specific, low-side-effect treatments, especially for cancer therapy. Unfortunately, excellent targets for enzyme-activated therapy are rare. Here a system based on cell delivery that can carry both a prodrug and an activating enzyme to the cancer site is demonstrated.

View Article and Find Full Text PDF

Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma.

View Article and Find Full Text PDF

Several tick-transmitted Anaplasmataceae family rickettsiales of the genera Ehrlichia and Anaplasma have been discovered in recent years. Some species are classified as pathogens causing emerging diseases with growing health concern for people. They include human monocytic ehrlichiosis, human granulocytic ewingii ehrlichiosis and human granulocytic anaplasmosis which are caused by Ehrlichia chaffeensis, E.

View Article and Find Full Text PDF

Ehrlichia chaffeensis, a tick-transmitted rickettsial, is the causative agent of human monocytic ehrlichiosis. To examine protein expression patterns, we analyzed total, membrane, and immunogenic proteomes of E. chaffeensis originating from macrophage and tick cell cultures.

View Article and Find Full Text PDF

Anthrax lethal toxin (LeTx; a combination of protective antigen and lethal factor) secreted by the vegetative cells of Bacillus anthracis is cytotoxic for certain macrophage cell lines. The role of LeTx in mediating these effects is complicated largely due to the difficulty in identifying and assigning functions to the affected proteins. To analyze the protein profile of murine macrophages treated with LeTx, we employed two-dimensional polyacrylamide gel electrophoresis and MALDI-TOF MS, and interpreted the peptide mass fingerprint data relying on the ProFound database.

View Article and Find Full Text PDF

Anthrax is an infectious disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis. To identify the mitochondrial proteins that are expressed differently in murine macrophages infected with spores of B. anthracis Sterne, proteomic and MALDI-TOF/MS analyses of uninfected and infected macrophages were conducted.

View Article and Find Full Text PDF

Bacillus anthracis is a soil pathogen capable of causing anthrax that is closely related to several environmental species, including B. cereus, B. mycoides, and B.

View Article and Find Full Text PDF

Anthrax is an infectious disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis, which is mainly present in the environment in the form of highly resistant spores. In order to elucidate a surface enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectroscopy analysis to profile different expressed proteins when B. anthracis spores are infected in human macrophages, we analyzed human macrophage cytosolic fractions for the infection of B.

View Article and Find Full Text PDF

Bacillus anthracis, a gram-positive, endospore-forming, aerobic rod-shaped bacterium, interacts with macrophages at various stages of the disease. Spore germination and the outgrowth of vegetative bacilli are crucial steps enabling the bacteria to proliferate actively and to synthesize the virulence factors leading to a massive septicemia. In this study, we performed a proteomic analysis and MALDI-TOF/MS were carried out to identify proteins using human macrophages infected with the spores of B.

View Article and Find Full Text PDF