Publications by authors named "Gweon Young Ryu"

The device performance of red organic light-emitting diodes (OLEDs) was dramatically improved by co-doping of the red fluorescent material of (2Z,2'Z)-3,3'-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-2',5'-diyl]-bis(2-phenylacrylonitrile) (ABCV-P) with the hole transport material of N'-bis-(1-naphyl)-N,N'-diphenyl-1,1 '-biphenyl-4,4'-diamine (NPB) and the electron transport material of bis(2-methyl-8-quninolinato)-4-phenylphenolate aluminum (BAlq). The device structures were ITO/NPB/emitting layers/BAlq/Liq/Al in which the emitting layers were MADN:ABCV-P (40%) (device A), MADN:ABCV-P (40%):NPB (10%) (device B), MADN:ABCV-P (40%):BAlq (10%) (device C) and MADN:ABCV-P (40%):NPB (10%):BAlq (10%) (device D), respectively. The device D co-doped with NPB and BAlq exhibited maximum luminance of 9784 cd/m2, maximum luminous efficiency of 2.

View Article and Find Full Text PDF

A novel yellow light-emitting material, (2Z)-3-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-2'-yl]-2-phenylacrylonitrile (BDAT-P), having the modified molecular structure from red fluorescent compound, (2Z, 2'Z)-3,3'-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-2',5'-diyl]bis(2-phenylacry-lonitrile) (ABCV-P), was synthesized in order to study the effect of the molecular structure on the optoelectronic properties of a light-emitting material. UV-visible absorption and photoluminescence (PL) emission peaks measured in various solvent systems were summarized in Table I. In the respective solvent system, the bathochromic shift of PL emission peak relative to the peak of UV-visible absorption was much larger for ABCV-P with two electron donor-acceptor pairs than for BDAT-P with one electron donor-acceptor pair.

View Article and Find Full Text PDF

Typical small red light-emitting molecules for organic light emitting diodes (OLEDs) were highly susceptible to fluorescence concentration quenching in solid state. Red fluorophores, (2Z, 2'Z)-3, 3'-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-29',5'-diyl]bis(2-phenylacrylonitrile) (ABCV-P), (2E, 2'E)-3,3'-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-2',5'-diyl]bis[2-(2-thienyl)acrylonitrile] (ABCV-Th) and (2Z, 2'Z)-3,3'-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-2',5'-diyl]bis[2-(2-naphthyl)acrylonitrile] (ABCV-Np), capable of preventing fluorescence concentration quenching were designed and synthesized. These compounds have intramolecular charge transfer (ICT) properties which were estimated by measurement of UV-Visible absorption and photoluminescence (PL) emission spectra with variation of solvent polarity (n-Hexane/Chloroform = 99/1, 1/1; Chloroform; Methylene chloride).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongo3lpn1e3u5f82h05cdrjrr9f6ue2uar): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once