Publications by authors named "Gwenola Gouesbet"

The increasing accumulation of small plastic particles, in particular microplastics (>1 µm to 5 mm) and nanoplastics (< 1 µm), in the environment is a hot topic in our rapidly changing world. Recently, studies were initiated to better understand the behavior of micro- and nanoplastics (MNP) within complex matrices like soil, as well as their characterization, incorporation and potential toxicity to terrestrial biota. However, there remains significant knowledge gaps in our understanding of the wide-extent impacts of MNP on terrestrial invertebrates.

View Article and Find Full Text PDF

The lesser mealworm, Alphitobius diaperinus, is an invasive tenebrionid beetle and a vector of pathogens. Due to the emergence of insecticide resistance and consequent outbreaks that generate significant phytosanitary and energy costs for poultry farmers, it has become a major insect pest worldwide. To better understand the molecular mechanisms behind this resistance, we studied a strain of A.

View Article and Find Full Text PDF

The identification and characterization of bona fide abiotic stress signaling proteins can occur at different levels of the complete in vivo signaling cascade or network. Knowledge of a particular abiotic stress signaling protein could theoretically lead to the characterization of complete networks through the analysis of unknown proteins that interact with the previously known protein. Such signaling proteins of interest can indeed be experimentally used as bait proteins to catch interacting prey proteins, provided that the association of bait proteins and prey proteins should yield a biochemical or biophysical signal that can be detected.

View Article and Find Full Text PDF

Plant functioning and responses to abiotic stresses largely involve regulations at the transcriptomic level via complex interactions of signal molecules, signaling cascades, and regulators. Nevertheless, all the signaling networks involved in responses to abiotic stresses have not yet been fully established. The in-depth analysis of transcriptomes in stressed plants has become a relevant state-of-the-art methodology to study these regulations and signaling pathways that allow plants to cope with or attempt to survive abiotic stresses.

View Article and Find Full Text PDF

Ecological interactions are rarely taken into account in environmental risk assessment. The objective of this work was to assess how interspecific competition affects the way plant species react to herbicides and more specifically how it modifies the concentration-response curves that can be built using ecotoxicological bioassays. To do this, we relied on the results of ecotoxicological bioassays on six herbaceous species exposed to isoproturon under two conditions: in presence and in absence of a competitor.

View Article and Find Full Text PDF

Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. Understanding the complex effects of soil pollution requires multi-level and multi-scale approaches. Non-target and agri-environmental plant communities of field margins and vegetative filter strips are confronted with agricultural xenobiotics through soil contamination, drift, run-off and leaching events that result from chemical applications.

View Article and Find Full Text PDF

Species Sensitivity Distributions (SSD) are widely used in environmental risk assessment to predict the concentration of a contaminant that is hazardous for 5% of species (HC). They are based on monospecific bioassays conducted in the laboratory and thus do not directly take into account ecological interactions. This point, among others, is accounted for in environmental risk assessment through an assessment factor (AF) that is applied to compensate for the lack of environmental representativity.

View Article and Find Full Text PDF

Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. The complex effects on plants are however difficult to apprehend. Plant communities of field margins, vegetative filter strips or rotational fallows are confronted with agricultural pollutants through residual soil contamination and/or through drift, run-off and leaching events that result from chemical applications.

View Article and Find Full Text PDF

Treatment of Arabidopsis thaliana seedlings with the PSII-inhibiting herbicide atrazine results in xenobiotic and oxidative stress, developmental arrest, induction of senescence and cell death processes. In contrast, exogenous sucrose supply confers a high level of atrazine stress tolerance, in relation with genome-wide modifications of transcript levels and regulation of genes involved in detoxification, defense and repair. However, the regulation mechanisms related to exogenous sucrose, involved in this sucrose-induced tolerance, are largely unknown.

View Article and Find Full Text PDF

The extent of residual contaminations of pesticides through drift, run-off and leaching is a potential threat to non-target plant communities. Arabidopsis thaliana responds to low doses of the herbicide atrazine, and of its degradation products, desethylatrazine and hydroxyatrazine, not only in the long term, but also under conditions of short-term exposure. In order to investigate underlying molecular mechanisms of low-dose responses and to decipher commonalities and specificities between different chemical treatments, parallel transcriptomic studies of the early effects of the atrazine-desethylatrazine-hydroxyatrazine chemical series were undertaken using whole-genome microarrays.

View Article and Find Full Text PDF

Herbicides are pollutants of great concern due to environmental ubiquity resulting from extensive use in modern agriculture and persistence in soil and water. Studies at various spatial scales have also highlighted frequent occurrences of major herbicide breakdown products in the environment. Analysis of plant behavior toward such molecules and their metabolites under conditions of transient or persistent soil pollution is important for toxicity evaluation in the context of environmental risk assessment.

View Article and Find Full Text PDF

Herbicide impact is usually assessed as the result of a unilinear mode of action on a specific biochemical target with a typical dose-response dynamics. Recent developments in plant molecular signaling and crosstalk between nutritional, hormonal and environmental stress cues are however revealing a more complex picture of inclusive toxicity. Herbicides induce large-scale metabolic and gene-expression effects that go far beyond the expected consequences of unilinear herbicide-target-damage mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • Lolium perenne is a key species in various ecosystems and can be affected by chemical pollutants in the soil, which may lead to adjustments in its metabolism.
  • A study using transcriptome analysis revealed that low levels of pollutants like glyphosate and tebuconazole influence critical gene expressions related to growth and stress responses, even without causing visible damage to the plants.
  • Findings indicate that even sub-toxic levels of pesticides can disrupt cellular signaling and metabolic processes, highlighting the intricate relationships between molecular responses, carbohydrate dynamics, and hormonal signaling in plants.
View Article and Find Full Text PDF

Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses.

View Article and Find Full Text PDF
Article Synopsis
  • Plant communities face various chemical stresses, and research has mostly focused on specific stressors under acute exposure rather than multiple stressors under realistic subtoxic conditions.
  • The C3 grass Lolium perenne was studied to understand how different chemical stressors like pesticides and heavy metals affect plant physiology, showing that these stressors cause distinct physiological changes and complex metabolic shifts.
  • The findings reveal that these chemical stresses impact nitrogen metabolism and photorespiration, indicating a connection between specific stressor effects and broader metabolic adjustments, which might involve changes in soluble sugars and how plants sense energy levels.
View Article and Find Full Text PDF

Anthropic changes and chemical pollution confront wild plant communities with xenobiotic combinations of bioactive molecules, degradation products, and adjuvants that constitute chemical challenges potentially affecting plant growth and fitness. Such complex challenges involving residual contamination and mixtures of pollutants are difficult to assess. The model plant Arabidopsis thaliana was confronted by combinations consisting of the herbicide glyphosate, the fungicide tebuconazole, the glyphosate degradation product aminomethylphosphonic acid (AMPA), and the atrazine degradation product hydroxyatrazine, which had been detected and quantified in soils of field margins in an agriculturally intensive region.

View Article and Find Full Text PDF

Higher plants are exposed to natural environmental organic chemicals, associated with plant-environment interactions, and xenobiotic environmental organic chemicals, associated with anthropogenic activities. The effects of these chemicals result not only from interaction with metabolic targets, but also from interaction with the complex regulatory networks of hormone signaling. Purpose-designed plant hormone analogues thus show extensive signaling effects on gene regulation and are as such important for understanding plant hormone mechanisms and for manipulating plant growth and development.

View Article and Find Full Text PDF

Anthropogenic changes and chemical pollution confront plant communities with various xenobiotic compounds or combinations of xenobiotics, involving chemical structures that are at least partially novel for plant species. Plant responses to chemical challenges and stimuli are usually characterized by the approaches of toxicology, ecotoxicology, and stress physiology. Development of transcriptomics and proteomics analysis has demonstrated the importance of modifications to gene expression in plant responses to xenobiotics.

View Article and Find Full Text PDF

An Arabidopsis thaliana T-DNA insertional mutant was identified and characterized for enhanced tolerance to the singlet-oxygen-generating herbicide atrazine in comparison to wild-type. This enhanced atrazine tolerance mutant was shown to be affected in the promoter structure and in the regulation of expression of the APL4 isoform of ADP-glucose pyrophosphorylase, a key enzyme of the starch biosynthesis pathway, thus resulting in decrease of APL4 mRNA levels. The impact of this regulatory mutation was confirmed by the analysis of an independent T-DNA insertional mutant also affected in the promoter of the APL4 gene.

View Article and Find Full Text PDF

Environmental genomics and genome-wide expression approaches deal with large-scale sequence-based information obtained from environmental samples, at organismal, population or community levels. To date, environmental genomics, transcriptomics and proteomics are arguably the most powerful approaches to discover completely novel ecological functions and to link organismal capabilities, organism-environment interactions, functional diversity, ecosystem processes, evolution and Earth history. Thus, environmental genomics is not merely a toolbox of new technologies but also a source of novel ecological concepts and hypotheses.

View Article and Find Full Text PDF

Background: Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes.

Methods: Availability of sugars in planta for stress responses is likely to depend on complex dynamics of soluble sugar accumulation, sucrose-starch partition and organ allocation.

View Article and Find Full Text PDF

Background: Besides being essential for plant structure and metabolism, soluble carbohydrates play important roles in stress responses. Sucrose has been shown to confer to Arabidopsis seedlings a high level of tolerance to the herbicide atrazine, which causes reactive oxygen species (ROS) production and oxidative stress. The effects of atrazine and of exogenous sucrose on ROS patterns and ROS-scavenging systems were studied.

View Article and Find Full Text PDF

Background: Soluble sugars, which play a central role in plant structure and metabolism, are also involved in the responses to a number of stresses, and act as metabolite signalling molecules that activate specific or hormone-crosstalk transduction pathways. The different roles of exogenous sucrose in the tolerance of Arabidopsis thaliana plantlets to the herbicide atrazine and oxidative stress were studied by a transcriptomic approach using CATMA arrays.

Results: Parallel situations of xenobiotic stress and sucrose-induced tolerance in the presence of atrazine, of sucrose, and of sucrose plus atrazine were compared.

View Article and Find Full Text PDF

Soluble sugars can induce tolerance to otherwise lethal concentrations of the herbicide atrazine in Arabidopsis thaliana seedlings. This sugar-induced tolerance involves modifications of gene expression which are likely to be related to sugar and xenobiotic signal transduction. Since it has been suggested that ethylene- and sugar-signalling pathways may interact, the effects of glucose (Glc) and sucrose (Suc) on seedling growth and tolerance to atrazine were analysed in etr1-1, ein2-1, ein4, and sis1/ctr1-12 ethylene-signalling mutant backgrounds, where key steps of ethylene signal transduction are affected.

View Article and Find Full Text PDF