Publications by authors named "Gwennou Coupier"

In a recent paper, [Gou , , 2023, , 9101-9114] studied numerically the viscosity of a confined suspension of vesicles flowing in a channel as a function of vesicle concentration. In order to discuss the genericity of the observed behaviour, namely a nearly constant effective viscosity at low concentrations, we complement their study by a comparison with the few existing ones in the literature. In particular, we highlight that they fail to reproduce well established results for blood viscosity in microcirculation, thereby suggesting that the conclusions regarding the optimization of cell transport and oxygenation may not apply.

View Article and Find Full Text PDF

Lift forces are widespread in hydrodynamics. These are typically observed for big and fast objects and are often associated with a combination of fluid inertia (i.e.

View Article and Find Full Text PDF

Collapse of lipidic ultrasound contrast agents under high-frequency compressive load has been historically interpreted by the vanishing of surface tension. By contrast, buckling of elastic shells is known to occur when costly compressible stress is released through bending. Through quasi-static compression experiments on lipidic shells, we analyse the buckling events in the framework of classical elastic buckling theory and deduce the mechanical characteristics of these shells.

View Article and Find Full Text PDF

On-chip study of blood flow has emerged as a powerful tool to assess the contribution of each component of blood to its overall function. Blood has indeed many functions, from gas and nutrient transport to immune response and thermal regulation. Red blood cells play a central role therein, in particular through their specific mechanical properties, which directly influence pressure regulation, oxygen perfusion, or platelet and white cell segregation toward endothelial walls.

View Article and Find Full Text PDF

We introduce a model that describes spherical oscillations of encapsulated microbubbles in an unbounded surrounding fluid. A Rayleigh-Plesset-like equation is derived by coupling the Navier-Stokes equation that describes fluid dynamics with the Navier equation that describes solid dynamics via the internal/external boundary conditions. While previous models were restricted to incompressible isotropic shells, the solid shell is modeled here as a compressible viscoelastic isotropic material and then generalized to an anisotropic material.

View Article and Find Full Text PDF

We investigate the relationship between pre-buckling and post-buckling states as a function of shell properties, within the deflation process of shells of an isotropic material. With an original and low-cost set-up that allows to measure simultaneously volume and pressure, elastic shells whose relative thicknesses span on a broad range are deflated until they buckle. We characterize the post-buckling state in the pressure-volume diagram, but also the relaxation toward this state.

View Article and Find Full Text PDF

The lateral migration of red blood cells (RBCs) in confined channel flows is an important ingredient of microcirculatory hydrodynamics and is involved in the development of a cell free layer near vessel walls and influences the distribution of RBCs in networks. It is also relevant to a number of lab-on-chip applications. This migration is a consequence of their deformability and is due to the combined effects of hydrodynamic wall repulsion and the curvature of the fluid velocity profile.

View Article and Find Full Text PDF

Microswimmers, and among them aspirant microrobots, generally have to cope with flows where viscous forces are dominant, characterized by a low Reynolds number (Re). This implies constraints on the possible sequences of body motion, which have to be nonreciprocal. Furthermore, the presence of a strong drag limits the range of resulting velocities.

View Article and Find Full Text PDF

We present experiments on RBCs that flow through micro-capillaries under physiological conditions. The strong flow-shape coupling of these deformable objects leads to a rich variety of cluster formation. We show that the RBC clusters form as a subtle imbrication between hydrodynamic interactions and adhesion forces because of plasma proteins, mimicked by the polymer dextran.

View Article and Find Full Text PDF

Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer simulations and in vitro experiments reveal that the hematocrit (ϕ0) partition depends strongly on RBC deformability, as long as ϕ0<20% (within the normal range in microcirculation), and can even lead to complete deprivation of RBCs in a child branch.

View Article and Find Full Text PDF

We investigate the dynamics of a vesicle suspension under shear flow between plates using DHM with a spatially reduced coherent source. Holograms are grabbed at a frequency of 24 frames/sec. The distribution of the vesicle suspension is obtained after numerical processing of the digital holograms sequence resulting in a 4D distribution.

View Article and Find Full Text PDF

The distribution of red blood cells (RBCs) in a confined channel flow is inhomogeneous and shows a marked depletion near the walls due to a competition between migration away from the walls and shear-induced diffusion resulting from interactions between particles. We investigated the lift of RBCs in a shear flow near a wall and measured a significant lift velocity despite the tumbling motion of cells. We also provide values for the collective and anisotropic shear-induced diffusion of a cloud of RBCs, both in the direction of shear and in the direction of vorticity.

View Article and Find Full Text PDF

Soft bodies flowing in a channel often exhibit parachutelike shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and build a phase diagram of shapes-which are classified as bullet, croissant, and parachute-in channels of varying aspect ratio. Unexpectedly, shapes are relatively wider in the narrowest direction of the channel.

View Article and Find Full Text PDF

Sengupta [Phys. Rev. E 61, 1072 (2000)] presented an elegant and simple finite-size scaling method for the calculation of elastic constants and their corresponding correlation lengths, which is suitable for many finite discrete systems considered through simulations or experiments.

View Article and Find Full Text PDF

We investigate the use of a digital holographic microscope working with partially coherent spatial illumination to study concentration profiles inside confined deformable bodies flowing in microchannels. The studied phenomenon is rapidly changing in time and requires the recording of the complete holographic information for every frame. For this purpose, we implemented one of the classical methods of off-axis digital holography: the Fourier method.

View Article and Find Full Text PDF

The single file diffusion in a circular channel of millimetric charged balls is studied. The evolution in time of the mean square displacement is shown to be subdiffusive, but slower than the powerlike t1/2 behavior observed in circular colloidal systems or predicted in one-dimensional infinite systems.

View Article and Find Full Text PDF

The influence of local order on the disordering scenario of small Wigner islands is discussed. A first disordering step is put in evidence by the time correlation functions and is linked to individual excitations resulting in configuration transitions, which are very sensitive to the local symmetries. This is followed by two other transitions, corresponding to orthoradial and radial diffusion, for which both individual and collective excitations play a significant role.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: