Publications by authors named "Gwenn A Garden"

Importance: Nonlinear changes in brain function during aging are shaped by a complex interplay of factors, including sex, age, genetics, and modifiable health risk factors. However, the combined effects and underlying mechanisms of these factors on brain functional connectivity remain poorly understood.

Objective: To comprehensively investigate the combined associations of sex, age, genotypes, and ten common modifiable health risk factors with brain functional connectivities during aging.

View Article and Find Full Text PDF

Abnormal endo-lysosomal morphology is an early cytopathological feature of Alzheimer's disease (AD) and genome-wide association studies (GWAS) have implicated genes involved in the endo-lysosomal network (ELN) as conferring increased risk for developing sporadic, late-onset AD (LOAD). Characterization of ELN pathology and the underlying pathophysiology is a promising area of translational AD research and drug development. However, rigorous study of ELN vesicles in AD and aged control brains poses a unique constellation of methodological challenges due in part to the small size of these structures and subsequent requirements for high-resolution imaging.

View Article and Find Full Text PDF

Mounting evidence suggests considerable diversity in brain aging trajectories, primarily arising from the complex interplay between age, genetic, and environmental risk factors, leading to distinct patterns of micro- and macro-cerebral aging. The underlying mechanisms of such effects still remain unclear. We conducted a comprehensive association analysis between cerebral structural measures and prevalent risk factors, using data from 36,969 UK Biobank subjects aged 44-81.

View Article and Find Full Text PDF

Microglia, the innate immune cells of the brain, influence Alzheimer's disease (AD) progression and are potential therapeutic targets. However, microglia exhibit diverse functions, the regulation of which is not fully understood, complicating therapeutics development. To better define the transcriptomic phenotypes and gene regulatory networks associated with AD, we enriched for microglia nuclei from 12 AD and 10 control human dorsolateral prefrontal cortices (7 males and 15 females, all aged >60 years) before single-nucleus RNA sequencing.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) as well as CNS and systemic inflammation. Microglia, the myeloid cells resident in the CNS, use microRNAs to rapidly respond to inflammatory signals. MicroRNAs (miRNAs) modulate inflammatory responses in microglia, and miRNA profiles are altered in Alzheimer's disease (AD) patients.

View Article and Find Full Text PDF

Scalable technologies to sequence the transcriptomes and epigenomes of single cells are transforming our understanding of cell types and cell states. The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) is applying these technologies at unprecedented scale to map the cell types in the mammalian brain. In an effort to increase data FAIRness (Findable, Accessible, Interoperable, Reusable), the NIH has established repositories to make data generated by the BICCN and related BRAIN Initiative projects accessible to the broader research community.

View Article and Find Full Text PDF

Background: Microglia have recently been implicated in opioid dependence and withdrawal. Mu Opioid (MOR) receptors are expressed in microglia, and microglia form intimate connections with nearby neurons. Accordingly, opioids have both direct (MOR mediated) and indirect (neuron-interaction mediated) effects on microglia function.

View Article and Find Full Text PDF

Background: Computational phenotypes are most often combinations of patient billing codes that are highly predictive of disease using electronic health records (EHR). In the case of rare diseases that can only be diagnosed by genetic testing, computational phenotypes identify patient cohorts for genetic testing and possible diagnosis. This article details the validation of a computational phenotype for PTEN hamartoma tumor syndrome (PHTS) against the EHR of patients at three collaborating clinical research centers: Boston Children's Hospital, Children's National Hospital, and the University of Washington.

View Article and Find Full Text PDF

Immunotherapy for haematologic malignancies with CD19-directed chimeric antigen receptor T cells has been highly successful at eradicating cancer but is associated with acute neurotoxicity in ∼40% of patients. This neurotoxicity correlates with systemic cytokine release syndrome, endothelial activation and disruption of endothelial integrity, but it remains unclear how these mechanisms interact and how they lead to neurologic dysfunction. We hypothesized that dysfunction of the neurovascular unit is a key step in the development of neurotoxicity.

View Article and Find Full Text PDF

Microglia maintain brain health and play important roles in disease and injury. Despite the known ability of microglia to proliferate, the precise nature of the population or populations capable of generating new microglia in the adult brain remains controversial. We identified Prominin-1 (Prom1; also known as CD133) as a putative cell surface marker of committed brain myeloid progenitor cells.

View Article and Find Full Text PDF

Microglia are the innate immune cells of the central nervous system that adopt rapid functional changes in response to Damage Associated Molecular Patterns, including aggregated β-Amyloid (Aβ) found in Alzheimer's disease (AD). microRNAs (miRNAs) are post-transcriptional modulators that influence the timing and magnitude of microglia inflammatory responses by downregulating the expression of inflammatory effectors. Recent studies implicate miR-155, a miRNA known to regulate inflammatory responses, in the pathogenesis of neurodegenerative disorders including multiple sclerosis, ALS, familial Parkinson's disease, and AD.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells provide new therapeutic options for patients with relapsed/refractory hematologic malignancies. However, neurotoxicity is a frequent, and potentially fatal, complication. The spectrum of manifestations ranges from delirium and language dysfunction to seizures, coma, and fatal cerebral edema.

View Article and Find Full Text PDF

The temporal molecular changes that lead to disease onset and progression in Alzheimer's disease (AD) are still unknown. Here we develop a temporal model for these unobserved molecular changes with a manifold learning method applied to RNA-Seq data collected from human postmortem brain samples collected within the ROS/MAP and Mayo Clinic RNA-Seq studies. We define an ordering across samples based on their similarity in gene expression and use this ordering to estimate the molecular disease stage-or disease pseudotime-for each sample.

View Article and Find Full Text PDF

Background: Early-onset familial Alzheimer disease (EOFAD) is caused by heterozygous variants in the presenilin 1 (PSEN1), presenilin 2 (PSEN2), and APP genes. Decades after their discovery, the mechanisms by which these genes cause Alzheimer's disease (AD) or promote AD progression are not fully understood. While it is established that presenilin (PS) enzymatic activity produces amyloid-β (Aβ), PSs also regulate numerous other cellular functions, some of which intersect with known pathogenic drivers of neurodegeneration.

View Article and Find Full Text PDF

Ischemic preconditioning (IPC) is an experimental phenomenon in which a subthreshold ischemic insult applied to the brain reduces damage caused by a subsequent more severe ischemic episode. Identifying key molecular and cellular mediators of IPC will provide critical information needed to develop novel therapies for stroke. Here we report that the transcriptomic response of acutely isolated preconditioned cortical microglia is dominated by marked upregulation of genes involved in cell cycle activation and cellular proliferation.

View Article and Find Full Text PDF

Objective: Autosomal-dominant familial Alzheimer disease (AD) is caused by by variants in presenilin 1 (), presenilin 2 (), and amyloid precursor protein (). Previously, we reported a rare frameshift variant in an early-onset AD case (PSEN2 p.K115Efs*11).

View Article and Find Full Text PDF
Article Synopsis
  • Histone deacetylases (HDACs), particularly HDAC2, play a critical role in regulating gene expression by removing acetyl groups from histone proteins, which affects chromatin structure; HDAC2 is notably elevated in the brains of Alzheimer's disease (AD) patients.
  • Research shows that HDAC2 suppresses the expression of neuron-specific Endophilin-B1 (Endo-B1), with decreased levels of this protein linked to neuron death, mitochondrial dysfunction, and neurotoxicity under conditions associated with beta-amyloid exposure.
  • Experiments in mice show that knocking out HDAC2 leads to improved neuronal survival and reduced brain injury in stroke models, suggesting that targeting HDAC2 could help counteract neuro
View Article and Find Full Text PDF

Microglia are the primary innate immune cell type in the brain, and their dysfunction has been linked to a variety of central nervous system disorders. Human microglia are extraordinarily difficult to obtain for experimental investigation, limiting our ability to study the impact of human genetic variants on microglia functions. Previous studies have reported that microglia-like cells can be derived from human monocytes or pluripotent stem cells.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how the Zika virus affected a baby monkey's brain when its mom was infected.
  • The baby developed brain damage in specific areas within 10 days after the infection.
  • This study helps researchers better understand Zika's effects on the brain, which can help find better treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Minocycline is identified as a broad-spectrum antibiotic often thought to inhibit microglia, which are immune cells in the brain.
  • Many studies have attributed certain pharmacological effects of minocycline to this supposed inhibition, but the actual mechanisms at the molecular and cellular levels remain unclear.
  • The article evaluates the evidence supporting minocycline as a true microglia inhibitor and suggests careful interpretation of research findings involving this drug.
View Article and Find Full Text PDF

There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment.

View Article and Find Full Text PDF

The tumor-suppressor protein p53 belongs to a family of proteins that play pivotal roles in multiple cellular functions including cell proliferation, cell death, genome stability, and regulation of inflammation. Neuroinflammation is a common feature of central nervous system (CNS) pathology, and microglia are the specialized resident population of CNS myeloid cells that initiate innate immune responses. Microglia maintain CNS homeostasis through pathogen containment, phagocytosis of debris, and initiation of tissue-repair cascades.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a family of small non-coding RNAs (~22 nucleotides) that fine-tune protein expression by either silencing mRNA translation or directly targeting gene transcripts for degradation. In the central nervous system (CNS), neuroinflammation plays a critical role in brain injury and neurodegeneration. Increasing evidence supports the involvement of miRNAs as key regulators of neuroinflammation.

View Article and Find Full Text PDF

Importance: The R47H variant in the triggering receptor expressed on myeloid cells 2 gene (TREM2), a modulator of the immune response of microglia, is a strong genetic risk factor for Alzheimer disease (AD) and possibly other neurodegenerative disorders.

Objective: To investigate a large family with late-onset AD (LOAD), in which R47H cosegregated with 75% of cases.

Design, Setting, And Participants: This study includes genetic and pathologic studies of families with LOAD from 1985 to 2014.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondgsr8agu6g09i6qs1ubb1dlvf83ki67g): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once