Publications by authors named "Gwendowlyn S Knapp"

This learning activity teaches the difficult concept of V(D)J recombination as it occurs in B cells. Following the traditional lecture, this hands-on activity uses pipe cleaners of various colors representing variable, joining, and diversity gene segments and recombination signal sequences. Students are provided with instructions for using the pipe cleaners to assemble specific light and heavy immunoglobulin chains.

View Article and Find Full Text PDF

The extreme academic and social disruption caused by COVID-19 in the spring and summer of 2020 led to the loss of many student internships. We report here our creation of a novel internship for students majoring in the biological sciences. Student interns worked together to systematically categorize multiple episodes of This Week in Microbiology (TWiM).

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) Cmr (Rv1675c) is a CRP/FNR family transcription factor known to be responsive to cAMP levels and during macrophage infections. However, Cmr's DNA binding properties, cellular targets and overall role in tuberculosis (TB) complex bacteria have not been characterized. In this study, we used experimental and computational approaches to characterize Cmr's DNA binding properties and identify a putative regulon.

View Article and Find Full Text PDF

Bacterial pathogens adapt to changing environments within their hosts, and the signaling molecule adenosine 3', 5'-cyclic monophosphate (cAMP) facilitates this process. In this study, we characterized in vivo DNA binding and gene regulation by the cAMP-responsive protein CRP in M. bovis BCG as a model for tuberculosis (TB)-complex bacteria.

View Article and Find Full Text PDF

All cells must adapt to changing conditions, and many use cyclic AMP (cAMP) as a second messenger to sense and respond to fluctuations in their environment. cAMP is made by adenylyl cyclases (ACs), and mycobacteria have an unusually large number of biochemically distinct ACs. cAMP is important for gene regulation in mycobacteria, and the ability to secrete cAMP into host macrophages during infection contributes to Mycobacterium tuberculosis pathogenesis.

View Article and Find Full Text PDF

EcoliWiki is the community annotation component of the PortEco (http://porteco.org; formerly EcoliHub) project, an online data resource that integrates information on laboratory strains of Escherichia coli, its phages, plasmids and mobile genetic elements. As one of the early adopters of the wiki approach to model organism databases, EcoliWiki was designed to not only facilitate community-driven sharing of biological knowledge about E.

View Article and Find Full Text PDF

cAMP is an ancient second messenger, and is used by many organisms to regulate a wide range of cellular functions. Mycobacterium tuberculosis complex bacteria are exceptional in that they have genes for at least 15 biochemically distinct adenylyl cyclases, the enzymes that generate cAMP. cAMP-associated gene regulation within tubercle bacilli is required for their virulence, and secretion of cAMP produced by M.

View Article and Find Full Text PDF

Background: Families of paralogous oligomeric proteins are common in biology. How the specificity of assembly evolves is a fundamental question of biology. The LysR-Type Transcriptional Regulators (LTTR) form perhaps the largest family of transcriptional regulators in bacteria.

View Article and Find Full Text PDF

Deletion analysis and alanine-scanning based on a homology-based interaction model were used to identify determinants of oligomerization in the transcriptional regulator CynR, a member of the LysR-type transcriptional regulator (LTTR) family. Deletion analysis confirmed that the putative regulatory domain of CynR was essential for driving the oligomerization of lambda repressor-CynR fusion proteins. The interaction surface of a different LTTR and OxyR was mapped onto a multiple sequence alignment of the LTTR family.

View Article and Find Full Text PDF

We examine the contribution of residues at the dimer interface of the transcriptional regulator OxyR to oligomerization. Residues in contact across the dimer interface of OxyR were identified using the program Quaternary Contacts (QContacts). Site-directed mutagenesis was performed on the non-alanine or glycine residues identified in the resultant contact profile and the oligomerization ability of the mutant proteins was tested using the lambdacI repressor system to identify residues that are hot spots in OxyR.

View Article and Find Full Text PDF

Exposure to UV causes a response in yeast and mammalian cells, which is distinct from the response to DNA damage. We report that the mitogen-activated protein kinase Slt2p is involved in this response in Saccharomyces cerevisiae. Thus, budding yeast and mammalian cells respond to UV by using very similar signal transduction pathways.

View Article and Find Full Text PDF