Publications by authors named "Gwendolyn L Kartje"

The nerve growth factor (NGF) receptor TrkA is a tightly regulated receptor tyrosine kinase that activates neuronal signaling pathways promoting cell survival in addition to axonal and dendritic outgrowth. Previously, we showed that NGF and TrkA signaling is altered in neuron-like PC12 cells that overexpress Nogo-A, a protein known to influence axonal outgrowth and dendritic arborization associated with neuronal plasticity. In the present report, we provide evidence for changes in NGF-mediated receptor-level and downstream signaling that occur in cells overexpressing Nogo-A.

View Article and Find Full Text PDF

It is well known that oligodendrocyte-associated Nogo-A protein is an important regulator of axonal outgrowth and an important inhibitor of functional recovery and anatomical plasticity after central nervous system (CNS) injury. Abundant studies of oligodendrocyte-associated Nogo-A function in the uninjured rodent have suggested a role in neuronal development and synaptic function. On the other hand, the roles of neuron-associated (i.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) can cause sensorimotor deficits, and recovery is slow and incomplete. There are no effective pharmacological treatments for recovery from TBI, but research indicates potential for anti-Nogo-A antibody (Ab) therapy. This Ab neutralizes Nogo-A, an endogenous transmembrane protein that inhibits neuronal plasticity and regeneration.

View Article and Find Full Text PDF

The proposed mission to Mars will expose astronauts to space radiation that is known to adversely affect cognition and tasks that rely on fine sensorimotor function. Space radiation has also been shown to affect the microglial and neurogenic responses in the central nervous system (CNS). We recently reported that a low dose of 5 cGy 600 MeV/n 28Si results in impaired cognition and skilled motor behavior in adult rats.

View Article and Find Full Text PDF

During a myocardial infarction or ischemic stroke, blood flow to the heart or brain is partially blocked. This results in reduced delivery of oxygen and nutrients and, ultimately, tissue damage. Initial treatment involves removing the clot and restoring blood flow (reperfusion).

View Article and Find Full Text PDF

Sexually dimorphic performance has been observed across humans and rodents in many spatial tasks. In general, these spatial tasks do not dissociate the use of environmental and self-movement cues. Previous work has demonstrated a role for self-movement cue processing in organizing open field behavior; however, these studies have not directly compared female and male movement characteristics.

View Article and Find Full Text PDF

Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions.

View Article and Find Full Text PDF

Background: Traumatic brain injury is a significant public health issue that results in serious disability in survivors. Traumatic brain injury patients are often intoxicated with alcohol when admitted to the hospital; however, it is not clear how acute intoxication affects recovery from a traumatic brain injury. Our group has previously shown that binge alcohol prior to traumatic brain injury resulted in long-term impairment in a fine sensorimotor task that was correlated with a decreased proliferative and neuroblast response from the subventricular zone.

View Article and Find Full Text PDF

Deep space flight missions beyond the Van Allen belt have the potential to expose astronauts to space radiation which may damage the central nervous system and impair function. The proposed mission to Mars will be the longest mission-to-date and identifying mission critical tasks that are sensitive to space radiation is important for developing and evaluating the efficacy of counter measures. Fine motor control has been assessed in humans, rats, and many other species using string-pulling behavior.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major cause of disability worldwide. Additionally, many TBI patients are intoxicated with alcohol at the time of injury, but the impact of acute intoxication on recovery from brain injury is not well understood. We have previously found that binge alcohol prior to TBI impairs spontaneous functional sensorimotor recovery.

View Article and Find Full Text PDF

The Nogo-A protein, originally discovered as a potent myelin-associated inhibitor of neurite outgrowth, is also expressed by certain neurons, especially during development and after injury, but its role in neuronal function is not completely known. In this report, we overexpressed Nogo-A in PC12 cells to use as a model to identify potential neuronal signaling pathways affected by endogenously expressed Nogo-A. Unexpectedly, our results show that viability of Nogo-A-overexpressing cells was reduced progressively due to apoptotic cell death following NGF treatment, but only after 24 h.

View Article and Find Full Text PDF

Many preclinical treatment strategies for stroke have failed when tested in human trials. Although the reasons for these translation failures are multifactorial, one potential concern is the statistical analysis of the preclinical data. One way to rigorously evaluate new therapies is to use an intention-to-treat analysis in preclinical studies.

View Article and Find Full Text PDF

Ischemic stroke is a leading cause of adult disability with no pharmacological treatments to promote the recovery of lost function. Neutralizing antibodies against the neurite outgrowth inhibitor Nogo-A have emerged as a promising treatment for subacute and chronic stroke in animal models; however, whether anti-Nogo-A treatment affects poststroke neurogenesis remains poorly understood. In this study, we confirmed expression of Nogo-A by neuroblasts in the adult rat subventricular zone (SVZ), a major neurogenic niche; however, we found no evidence that Nogo-A was expressed at the surface of these cells.

View Article and Find Full Text PDF

Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke.

View Article and Find Full Text PDF

A significant number of patients suffering from traumatic brain injury (TBI) have a high blood alcohol level at the time of injury. Furthermore, drinking alcohol in a binge-like pattern is now recognized as a national problem, leading to a greater likelihood of being injured. Our objective was to determine the consequences of a binge paradigm of alcohol intoxication at the time of TBI on long-term functional outcome using a sensitive test of sensorimotor function.

View Article and Find Full Text PDF

Previously we have shown that addition of amphetamine to physical therapy results in enhanced motor improvement following stroke in rats, which was associated with the formation of new motor pathways from cortical projection neurons of the contralesional cortex. It is unclear what mechanisms are involved, but amphetamine is known to induce the neuronal release of catecholamines as well as upregulate fibroblast growth factor-2 (FGF-2) expression in the brain. Since FGF-2 has been widely documented to stimulate neurite outgrowth, the present studies were undertaken to provide evidence for FGF-2 as a neurobiological mechanism underlying amphetamine-induced neuroplasticity.

View Article and Find Full Text PDF

Background: The extent to which pharmaceutical and behavioral therapies following central nervous system injury may either deter or encourage the development of compensatory movement patterns is a topic of considerable interest in neurorehabilitation. However, functional outcome measures alone are relatively insensitive to compensatory changes in movement patterns per se.

Objective: This study used both functional outcome measures and kinematic analysis of forelimb movements to examine the effects of human adult bone marrow-derived somatic cells (hABM-SCs) on motor recovery in a rat model of stroke.

View Article and Find Full Text PDF

Background And Purpose: we have shown that anti-Nogo-A immunotherapy to neutralize the neurite growth inhibitory protein Nogo-A results in functional improvement and enhanced plasticity after ischemic stroke in the adult rat. The present study investigated whether functional improvement and neuronal plasticity can be induced by this immunotherapy when administered to the chronic stroke-impaired rat.

Methods: adult rats were trained to perform the skilled forelimb reaching test, followed by permanent middle cerebral artery occlusion to impair the preferred forelimb.

View Article and Find Full Text PDF

Drugs that increase central noradrenergic activity have been shown to enhance the rate of recovery of motor function in pre-clinical models of brain damage. Less is known about whether noradrenergic agents can improve the extent of motor recovery and whether such improvement can be sustained over time. This study was designed to determine if increasing central noradrenergic tone using atipamezole, an alpha-2 adrenoceptor antagonist, could induce a long-term improvement in motor performance in rats subjected to ischemic brain damage caused by permanent middle cerebral artery occlusion.

View Article and Find Full Text PDF

We have previously shown that immunotherapy directed against the protein Nogo-A leads to recovery on a skilled forelimb reaching task in rats after sensorimotor cortex stroke, which correlated with axonal and dendritic plasticity. Here we investigated anti-Nogo-A immunotherapy as an intervention to improve performance on a spatial memory task in aged rats after stroke, and whether cognitive recovery was correlated with structural plasticity. Aged rats underwent a unilateral distal permanent middle cerebral artery occlusion and one week later were treated with an anti-Nogo-A or control antibody.

View Article and Find Full Text PDF

Background And Purpose: There is considerable debate regarding the efficacy of amphetamine to facilitate motor recovery after stroke or experimental brain injury. Different drug dosing and timing schedules and differing physical rehabilitation strategies may contribute to outcome variability. The present study was designed to ascertain (1) whether short-term amphetamine could induce long-term functional motor recovery in rats after an ischemic lesion modeling stroke in humans; (2) how different levels of physical rehabilitation interact with amphetamine to enhance forelimb-related functional outcome; and (3) whether motor improvement was associated with axonal sprouting from intact corticoefferent pathways originating in the contralesional forelimb motor cortex.

View Article and Find Full Text PDF

Medial agranular cortex (AGm) has a prominent bilateral projection to the dorsocentral striatum (DCS). We wished to develop a normal baseline by which to assess neuronal plasticity in this corticostriatal system in rats with neglect resulting from a unilateral lesion in AGm, followed by treatment with agents that promote sprouting and functional recovery in other systems. Injections of biotinylated dextran amine were made into AGm in normal rats, and unbiased sampling was used to quantify the density of axons and axonal varicosities present in DCS (the latter represent presynaptic profiles).

View Article and Find Full Text PDF

Background And Purpose: The Nogo-A protein is an important inhibitor of axonal remodeling after central nervous system injuries, including ischemic stroke. Interfering with the function of Nogo-A via infusion of a therapeutic anti-Nogo-A antibody after stroke increases neuronal remodeling and enhances functional recovery in rats. In this study, we describe the regional distribution of cortical neurons expressing Nogo-A in normal rats and following middle cerebral artery occlusion (MCAO).

View Article and Find Full Text PDF

Ischemic stroke affects many new patients each year. The sequelae of brain ischemia can include lasting sensorimotor and cognitive deficits, which negatively impact quality of life. Currently, treatment options for improving poststroke deficits are limited, and the development of new clinical alternatives to improve functional recovery after stroke is actively under investigation.

View Article and Find Full Text PDF