Publications by authors named "Gwenaelle Le-Bourdon"

Gaseous iodomethane (CHI) is naturally emitted into the atmosphere by biological activity in oceans and during severe accidents (SAs) in nuclear power plants. In this latter case, a part of radioactive iodine such as I may be released. Improving the knowledge of CHI transport and reactivity in the atmosphere is important since they are strongly linked to first the cycle of ozone and second to the dispersion of radioactive CHI with potential radiological consequences on both the environment and human health.

View Article and Find Full Text PDF

The supercritical impregnation process was used as a green technology for the elaboration of drug delivery intraocular lenses to mitigate the risk of post-operatory endophthalmitis after cataract surgery. Commercially available hydrophobic acrylic (copolymer of benzyl methacrylate and methyl methacrylate) intraocular lenses (IOLs) were impregnated with gatifloxacin, a fourth generation fluoroquinolone drug, using pure supercritical CO (scCO) to obtain solvent-free loaded implants. The interaction phenomena involved in the supercritical impregnation were studied by following in situ scCO sorption within the polymer support and the subsequent IOL swelling, and by taking into account drug solubility in the supercritical fluid phase.

View Article and Find Full Text PDF

Mycobacterium tuberculosis is the cause of one of the diseases with the highest mortality and morbidity rate in the Americas and in the world. In developing countries, the diagnosis of tuberculosis (TB) is based on baciloscopy and bacteriological cultures. The first method has a low sensitivity, and the second can take several weeks to reach a confirmatory diagnosis.

View Article and Find Full Text PDF

The design of nanocarriers containing hydrophobic and hydrophilic compounds represents a powerful tool for cocktail delivery. Water-in-oil-in-water emulsions constitute an attractive approach, as they offer dual encapsulation and provide a template for the constitution of a capsule. A limitation in the preparation of nano double emulsions is their instability resulting from high curvature radii.

View Article and Find Full Text PDF

Non-invasive identification of organic colourants in paintings still remains a challenging issue, especially in the case of extremely thin layers of paint on printed paper such as Japanese ukiyo-e prints. Because prints are fragile artworks, various non-invasive analytical methods need to be employed. The present work focuses on results obtained by combining fibre optic reflectance spectroscopy in the near-infrared range (FORS NIR) with mid-infrared (MIR) spectroscopy.

View Article and Find Full Text PDF

In order to investigate the principle of chiral induction from nanometric silica helices to polyoxometalate (POM) clusters, a series of optically active silica POM-based nanohelices (NANOPOMs) have been prepared by electrostatic grafting and direct adsorption of α-Keggin polyoxometalate [α-PW O ] to well-defined left- and right-handed silica nanohelices. UV/Vis, Raman, DRIFT, TEM, HR-TEM, EDS and circular dichroism (CD) spectroscopy were used to characterize these NANOPOMs, and confirm the presence of POM clusters as well as their interactions with the helical support. The optical activity of the left-handed and right-handed NANOPOMs has been proven by CD spectroscopy.

View Article and Find Full Text PDF

We report the synthesis of new coupling agents with internal amide or urea groups possessing an epoxy-terminal group and trimethoxysilyl-anchoring group. The structural characterizations of the corresponding self-assembled monolayers (SAMs) were performed by polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS). The molecular assembly is mainly based on the intermolecular hydrogen-bonding between adjacent amide or urea groups in the monolayers.

View Article and Find Full Text PDF

The covalent grafting on silica surfaces of a functional dendritic organosilane coupling agent inserted, in a long alkyl chain monolayer, is described. In this paper, we show that depending on experimental parameters, particularly the solvent, it is possible to obtain a nanodesigned surface via a bottom-up approach. Thus, we succeed in the formation of both homogeneous dense monolayer and a heterogeneous dense monolayer, the latter being characterized by a nanosized volcano-type pattern (4-6 nm of height, 100 nm of width, and around 3 volcanos/μm(2)) randomly distributed over the surface.

View Article and Find Full Text PDF

Carb your enthusiasm: Carbazole-based sensitizers with high extinction coefficients are synthesized for application in dye-sensitized solar cells (DSCs). The dyes perform efficiently with both iodine and cobalt electrolytes, showing power conversion efficiencies of up to 5.8% on TiO₂ films of 15 μm thickness, and retaining 90% of their efficiency in devices with thinner films.

View Article and Find Full Text PDF

A novel urea coupling agent possessing a vinyl-terminal group and trimethoxysilyl anchoring group was synthesized and grafted onto SiO(2)/Au substrates. This ureido coupling agent exhibits a good capacity to directly yield homogeneous SAMs with a surface smoothing. Polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) was used to monitor these SAMs.

View Article and Find Full Text PDF

Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was used to characterize self-assembled monolayers (SAMs). Novel ester-terminated organosilicon coupling agents possessing a trialkoxysilyl headgroup and a urea group in the linear alkyl chains (4) were synthesized and grafted onto SiO(2)/Au substrates (SiO(2) film of 200 Å thickness deposited on gold mirror). This composite substrate allowed the anchoring of SAMs and preserved the high reflectivity for infrared radiation.

View Article and Find Full Text PDF