The transition from a milk-based diet to exclusive solid feeding deeply modifies microbiota-host crosstalk. Specifically, early ingestion of plant polysaccharides would be one of the main nutritional components to drive host-microbiota-interaction. To capture the effects of polysaccharides early-life nutrition (starch vs rapidly fermentable fiber) on the holobiont development, we investigated on the one hand the gut bacteriome and metabolome and on the other hand the transcriptome of two host gut tissues.
View Article and Find Full Text PDFIn mammals, the introduction of solid food is pivotal for the establishment of the gut microbiota. However, the effects of the first food consumed on long-term microbiota trajectory and host response are still largely unknown. This study aimed to investigate the influences of (i) the timing of first solid food ingestion and (ii) the consumption of plant polysaccharides on bacterial community dynamics and host physiology using a rabbit model.
View Article and Find Full Text PDFEarly introduction of a nutritional substrate is a promising biomimetic strategy for controlling the implantation of the microbiota and preserving the health of young animals. In this study, we provided experimental solid substrate in a gel form to stimulate suckling rabbits' intake and to investigate its effects on microbiota implantation and colonization. All the rabbits had access to solid feed outside the nest as of 15 days of age.
View Article and Find Full Text PDFData Brief
April 2020
Weaning is a critical period for the health of rabbits, with a high sensitivity to digestive diseases. Allowing early consumption of solid feed in the nest of the suckling rabbit could help to maintain its health around weaning. In general, previous studies have focused on feed intake of rabbits when they are able to leave the nest, i.
View Article and Find Full Text PDFBackground: Short-term feed restriction strategies are used in rabbits to reduce postweaning digestive disorders, but little is known about the involvement of the immune system in these beneficial effects.
Objective: In the present study, the consequences of feed and energy restriction on immune response were investigated.
Methods: At weaning, 320 male and female rabbits were assigned to 4 groups differing in dietary digestible energy (DE) concentrations and intake levels: a low-energy ad libitum-feed (LE100) group, a low-energy restricted-feed (LE75) group, a high-energy ad libitum-feed (HE100) group, and a high-energy restricted-feed (HE75) group.