Core-collapse supernovae produce fast shocks which pervade the dense circumstellar medium (CSM) of the stellar progenitor. Cosmic rays (CRs) if accelerated at these shocks can induce the growth of electromagnetic fluctuations in the foreshock medium. In this study, using a self-similar description of the shock evolution, we calculate the growth time-scales of CR-driven instabilities.
View Article and Find Full Text PDFWe show that the mysterious, rapidly variable emission at ∼400 MeV observed from the Crab Nebula by the AGILE and Fermi satellites could be the result of a sudden drop in the mass loading of the pulsar wind. The current required to maintain wave activity in the wind is then carried by very few particles of a high Lorentz factor. On impacting the nebula, these particles produce a tightly beamed, high-luminosity burst of hard gamma rays, similar to those observed.
View Article and Find Full Text PDFIn the energy range from ∼10(12) eV to ∼10(15) eV, the Galactic cosmic ray flux has anisotropies both on large scales, with an amplitude of the order of 0.1%, and on scales between ≃10° and ≃30°, with amplitudes smaller by a factor of a few. With a diffusion coefficient inferred from Galactic cosmic ray chemical abundances, the diffusion approximation predicts a dipolar anisotropy of comparable size, but does not explain the smaller scale anisotropies.
View Article and Find Full Text PDF