Publications by authors named "Gwen Lomberk"

Enhancer of Zeste Homologue 2 (EZH2) is part of the Polycomb Repressor Complex 2, which promotes trimethylation of lysine 27 on histone 3 (H3K27me3) and genes repression. EZH2 is overexpressed in many cancers and studies in mice attributed both pro-oncogenic and tumor suppressive functions to EZH2 in pancreatic ductal adenocarcinoma (PDAC). EZH2 deletion enhances de novo KRAS-driven neoplasia following pancreatic injury, while increased EZH2 expression in PDAC patients is correlated to poor prognosis, suggesting a context-dependant effect for EZH2 in PDAC progression.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is characterized by the sustained activation of interstitial fibroblasts leading to excessive collagen deposition and progressive organ failure. Epigenetic and metabolic abnormalities have been shown to contribute to the persistent activated state of scar-forming fibroblasts. However, how epigenetic changes regulate fibroblast metabolic responses to promote fibroblast activation and progressive fibrosis remains largely unknown.

View Article and Find Full Text PDF

Aims: Epigenomics has significantly advanced through the incorporation of Systems Biology approaches. This study aims to investigate the human lysine methylome as a system, using a data-science approach to reveal its emergent properties, particularly focusing on histone mimicry and the broader implications of lysine methylation across the proteome.

Methods: We employed a data-science-driven OMICS approach, leveraging high-dimensional proteomic data to study the lysine methylome.

View Article and Find Full Text PDF

Rare and undiagnosed diseases pose significant challenges for understanding their mechanisms, diagnosis, and treatment. The Triple Code Model, an integrative paradigm described here, considers the combined influence of the genetic code, epigenetic code, and nuclear structure (an emerging code), as fundamental biochemical mechanisms underlying many rare diseases. Studies demonstrate dysfunctional membrane and cytoplasmic signals instruct the epigenome to ultimately impact the 3D structure and dynamics of the nucleus, highlighting their close interrelationships.

View Article and Find Full Text PDF
Article Synopsis
  • The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2/G9a) is important for regulating gene expression related to organ health, influencing inflammation and potentially cancer development.
  • Recent studies indicate that deactivating EHMT2 in mouse pancreatic cells changes gene expression linked to damage and inflammation, which may enhance susceptibility to injury.
  • The research uses advanced techniques to analyze how the pancreas responds to damage, revealing that loss of EHMT2 leads to an escalated inflammatory response by altering the local cell environment, suggesting its role in both cancer suppression and inflammatory diseases.
View Article and Find Full Text PDF

Objective: The adverse effects of ischemia-reperfusion injury (IRI) remain a principal barrier to a successful outcome after lifesaving orthotopic liver transplantation (OLT). Gene expression during different phases of IRI is dynamic and modified by individual exposures, making it attractive for identifying potential therapeutic targets for improving the number of suitable organs for transplantation and patient outcomes. However, data remain limited on the functional landscape of gene expression during liver graft IRI, spanning procurement to reperfusion and recovery.

View Article and Find Full Text PDF

The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that EHMT2 inactivation alters growth and immune gene expression networks, antagonizing KRAS-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of EHMT2 in maintaining a transcriptional landscape that protects organs from inflammation.

View Article and Find Full Text PDF

We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid-liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The Kras mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development.

View Article and Find Full Text PDF

Kleefstra Syndrome type 2 (KLEFS-2) is a genetic, neurodevelopmental disorder characterized by intellectual disability, infantile hypotonia, severe expressive language delay, and characteristic facial appearance, with a spectrum of other distinct clinical manifestations. Pathogenic mutations in the epigenetic modifier type 2 lysine methyltransferase KMT2C have been identified to be causative in KLEFS-2 individuals. This work reports a translational genomic study that applies a multidimensional computational approach for deep variant phenotyping, combining conventional genomic analyses, advanced protein bioinformatics, computational biophysics, biochemistry, and biostatistics-based modeling.

View Article and Find Full Text PDF

This study investigates the functional significance of assorted variants of uncertain significance (VUS) in euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, accurate functional interpretations of these variants are yet to be made, limiting diagnoses and future research.

View Article and Find Full Text PDF

Current capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions.

View Article and Find Full Text PDF

This study investigates the functional significance of assorted variants of uncertain significance (VUS) in euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, accurate functional interpretation of these variants are yet to be made, limiting diagnoses and future research.

View Article and Find Full Text PDF

Histone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis.

View Article and Find Full Text PDF

Current capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions.

View Article and Find Full Text PDF

Background: Systems biology leveraging multi-OMICs technologies, is rapidly advancing development of precision therapies and matching patients to targeted therapies, leading to improved responses. A new pillar of precision oncology lies in the power of chemogenomics to discover drugs that sensitizes malignant cells to other therapies. Here, we test a chemogenomic approach using epigenomic inhibitors (epidrugs) to reset patterns of gene expression driving the malignant behavior of pancreatic tumors.

View Article and Find Full Text PDF

In response to stress, cells make a critical decision to arrest or undergo apoptosis, mediated in large part by the tumor suppressor p53. Yet the mechanisms of these cell fate decisions remain largely unknown, particularly in normal cells. Here, we define an incoherent feed-forward loop in non-transformed human squamous epithelial cells involving p53 and the zinc-finger transcription factor KLF5 that dictates responses to differing levels of cellular stress from UV irradiation or oxidative stress.

View Article and Find Full Text PDF

Background & Aims: Although T-cell intrinsic expression of G9a has been associated with murine intestinal inflammation, mechanistic insight into the role of this methyltransferase in human T-cell differentiation is ill defined, and manipulation of G9a function for therapeutic use against inflammatory disorders is unexplored.

Methods: Human naive T cells were isolated from peripheral blood and differentiated in vitro in the presence of a G9a inhibitor (UNC0642) before being characterized via the transcriptome (RNA sequencing), chromatin accessibility (assay for transposase-accessible chromatin by sequencing), protein expression (cytometry by time of flight, flow cytometry), metabolism (mitochondrial stress test, ultrahigh performance liquid chromatography-tandem mas spectroscopy) and function (T-cell suppression assay). The in vivo role of G9a was assessed using 3 murine models.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC), has recently been found to be a heterogeneous disease, although the extension of its diversity remains to be fully understood. Here, we harmonize transcriptomic profiles derived from both PDAC epithelial and microenvironment cells to develop a Master Regulators (MR)-Gradient model that allows important inferences on transcriptional networks, epigenomic states, and metabolomics pathways that underlies this disease heterogeneity. This gradient model was generated by applying a blind source separation based on independent components analysis and robust principal component analyses (RPCA), following regulatory network inference.

View Article and Find Full Text PDF

Proteomic, cellular and biochemical analysis of the stress protein NUPR1 reveals that it binds to PARP1 into the nucleus and inhibits PARP1 activity in vitro. Mutations on residues Ala33 or Thr68 of NUPR1 or treatment with its inhibitor ZZW-115 inhibits this effect. PARylation induced by 5-fluorouracil (5-FU) treatment is strongly enhanced by ZZW-115 and associated with a decrease of NAD/NADH ratio and rescued by the PARP inhibitor olaparib.

View Article and Find Full Text PDF

The histone demethylase KDM6A has recently elicited significant attention because its mutations are associated with a rare congenital disorder (Kabuki syndrome) and various types of human cancers. However, distinguishing KDM6A mutations that are deleterious to the enzyme and their underlying mechanisms of dysfunction remain to be fully understood. Here, we report the results from a multi-tiered approach evaluating the impact of 197 KDM6A somatic mutations using information derived from combining conventional genomics data with computational biophysics.

View Article and Find Full Text PDF
Article Synopsis
  • Disrupted signaling for DNA damage can compromise cell integrity and is linked to cancer development.
  • Recent advancements in human genome understanding highlight the significance of chromatin biology, particularly histone post-translational modifications, in cancer research.
  • The text discusses how histone methylation pathways play a role in DNA repair and tumor development, and explores their potential as targets for cancer therapies.
View Article and Find Full Text PDF

Purpose: Trauma is the leading cause of death before the age of 45 in the United States. Precision medicine (PM) is the most advanced scientific form of medical practice and seeks to gather data from the genome, environmental interactions, and lifestyles. Relating to trauma, PM promises to significantly advance our understanding of the factors that contribute to the physiologic response to injury.

View Article and Find Full Text PDF
Article Synopsis
  • Kras mutations are the main cause of pancreatic ductal adenocarcinoma initiation and can be studied using GEMM-derived cell models with inducible Kras expression.
  • The study examines how the transcriptional response to Kras activation involves mainly downregulated gene expression and correlates with epigenetic changes, particularly chromatin remodeling.
  • The findings reveal a detailed early epigenomic program regulated by Kras that is crucial for understanding the transcriptional activity associated with this oncogene in pancreatic cells.*
View Article and Find Full Text PDF