Publications by authors named "Gwen Goings"

We evaluated the therapeutic efficacy and mechanisms of action of both mouse and human B7-H4 Immunoglobulin fusion proteins (mB7-H4Ig; hB7-H4Ig) in treating EAE. The present data show that mB7-H4Ig both directly and indirectly (via increasing Treg function) inhibited CD4⁺ T-cell proliferation and differentiation in both Th1- and Th17-cell promoting conditions while inducing production of IL-10. B7-H4Ig treatment effectively ameliorated progression of both relapsing (R-EAE) and chronic EAE correlating with decreased numbers of activated CD4⁺ T-cells within the CNS and spleen, and a concurrent increase in number and function of Tregs.

View Article and Find Full Text PDF

In humans and certain strains of laboratory mice, male tissue is recognized as nonself and destroyed by the female immune system via recognition of histocompatibility Y chromosome Ag (Hya). Male tissue destruction is thought to be accomplished by CTLs in a helper-dependent manner. We show that graft protection induced with the immunodominant Hya-encoded CD4 epitope (Dby) attached to female splenic leukocytes (Dby-SPs) with the chemical cross-linker ethylenecarbodiimide significantly, and often indefinitely, prolongs the survival of male skin graft transplants in an Ag-specific manner.

View Article and Find Full Text PDF

Theiler's murine encephalomyelitis virus (TMEV) establishes a persistent infection in the central nervous system (CNS). To examine the role of type I interferon (IFN-I)-mediated signals in TMEV infection, mice lacking a subunit of the type I IFN receptor (IFN-IR KO mice) were utilized. In contrast to wild type mice, IFN-IR KO mice developed rapid fatal encephalitis accompanied with greater viral load and infiltration of immune cells to the CNS.

View Article and Find Full Text PDF

Neurogenesis following neural degeneration has been demonstrated in many models of disease and injury. The present study further examines the early proliferative and migratory response of the brain to a controlled cortical impact (CCI) model of traumatic brain injury. The CCI was centered over the forelimb sensorimotor cortex, unilaterally, in the adult mouse.

View Article and Find Full Text PDF