Stereotactic radiosurgery planning for cerebral arteriovenous malformations (AVM) is complicated by the variability in appearance of an AVM nidus across different imaging modalities. We developed a deep learning approach to automatically segment cerebrovascular-anatomical maps from multiple high-resolution magnetic resonance imaging/angiography (MRI/MRA) sequences in AVM patients, with the goal of facilitating target delineation. Twenty-three AVM patients who were evaluated for radiosurgery and underwent multi-parametric MRI/MRA were included.
View Article and Find Full Text PDFPurpose This study aimed to perform a longitudinal analysis of linear accelerator (linac) technical faults reported with a cloud-based Machine Log system in use in a busy academic clinic and derive operational insights related to linac reliability, clinical utilization, and performance. Methods We queried the Machine Log system for the following parameters: linac type, number of reported technical faults, types of fault, number of faults where the linac was disabled, and estimated clinical downtime. The number of fractions treated and monitor units (MU) delivered were obtained from the record and verify system as metrics of linac utilization and to normalize the number of reported linac faults, facilitating inter-comparison.
View Article and Find Full Text PDFThe purpose of this report is to provide detailed guidance on the dosimetry of the INTRABEAM® (Carl Zeiss Medical AG, Jena, Germany) electronic brachytherapy (eBT) system as it stands at the present time. This report has been developed by the members of American Association of Physicists in Medicine (AAPM) Task Group 292 and endorsed by the AAPM. Members of AAPM Task Group 292 on Electronic-Brachytherapy Dosimetry have reviewed pertinent publications and user manuals regarding the INTRABEAM system dosimetry and manufacturer-supplied dose calculation protocols.
View Article and Find Full Text PDFBackground: While the review of radiotherapy treatment plans and charts by a medical physicist is a key component of safe, high-quality care, very few specific recommendations currently exist for this task.
Aims: The goal of TG-275 is to provide practical, evidence-based recommendations on physics plan and chart review for radiation therapy. While this report is aimed mainly at medical physicists, others may benefit including dosimetrists, radiation therapists, physicians and other professionals interested in quality management.
Purpose: In this work, we investigated the effect on the workflow and setup accuracy of using surface guided radiation therapy (SGRT) for patient setup, megavoltage cone beam CT (MVCBCT) or kilovoltage cone beam CT (kVCBCT) for imaging and fixed IMRT or volumetric-modulated arc therapy (VMAT) for treatment delivery with the Halcyon linac.
Methods: We performed a retrospective investigation of 272 treatment fractions, using three different workflows. The first and second workflows used MVCBCT and fixed IMRT for imaging and treatment delivery, and the second one also used SGRT for patient setup.
Purpose: The Halcyon consists of precommissioned linear accelerator and treatment planning algorithms that were designed to simplify the acceptance, commissioning, and clinical workflow for image-guided intensity-modulated radiotherapy. The purpose of this work was to perform a comprehensive safety assessment for the clinical use of the Halcyon.
Methods: Systems-Theoretic Process Analysis was used as the safety assessment tool.
Purpose: To investigate the plan quality and doses to the heart, contralateral breast (CB), ipsilateral lung (IL), and contralateral lung (CL) in tangential breast treatments using the Halcyon linac with megavoltage setup fields.
Methods: Radiotherapy treatment plans with tangential beams from 25 breast cancer patients previously treated on a C-arm linac were replanned for Halcyon. Thirteen corresponded to right-sided breasts and 12 to left-sided breasts, all with a dose prescription of 50 Gy in 25 fractions.
Purpose: To assess the performance of routine cone-beam computed tomography (CBCT) quality assurance (QA) at predicting and diagnosing clinically recognizable linac CBCT image quality issues.
Methods: Monthly automated linac CBCT image quality QA data were acquired on eight Varian linacs (Varian Medical Systems, Palo Alto, CA) using the CATPHAN 500 series phantom (The Phantom Laboratory, Inc., Greenwich, NY) and Total QA software (Image Owl, Inc.
Purpose: To characterize the stacked and staggered dual-layer multileaf collimator (MLC) on the Halcyon system.
Methods: The novel MLC assembly was reviewed and compared to the widely used Millennium 120-leaf MLC system. We investigated the MLC positioning stability over 70 days using Machine Performance Check (MPC) data.
For external beam stereotactic radiosurgery of multiple brain metastatic lesions, it is difficult to select optimal treatment isocenters because the orientation and volume of each planning target volume (PTV) and its proximity to critical structures are unique for each patient. The RayStation treatment planning system offers Python-based scripting to optimize the placement of the treatment isocenter by comparing scenario-based plans. This can improve the plan quality by reducing the dose to the normal brain and increasing planning efficiency.
View Article and Find Full Text PDFPurpose: To implement the DMAIC (Define-Measure-Analyze-Improve-Control) can be used for customizing the patient-specific QA by designing site-specific range tolerances.
Methods: The DMAIC framework (process flow diagram, cause and effect, Pareto chart, control chart, and capability analysis) were utilized to determine the steps that need focus for improving the patient-specific QA. The patient-specific range QA plans were selected according to seven treatment site groups, a total of 1437 cases.
Purpose: To present the k-means clustering algorithm as a tool to address treatment planning considerations characteristic of stereotactic radiosurgery using a single isocenter for multiple targets.
Methods: For 30 patients treated with stereotactic radiosurgery for multiple brain metastases, the geometric centroids and radii of each met were determined from the treatment planning system. In-house software used this as well as weighted and unweighted versions of the k-means clustering algorithm to group the targets to be treated with a single isocenter, and to position each isocenter.
J Appl Clin Med Phys
May 2017
Purpose: To present the results and discuss potential insights gained through surveys on reference dosimetry practices.
Methods: Two surveys were sent to medical physicists to learn about the current state of reference dosimetry practices at radiation oncology clinics worldwide. A short survey designed to maximize response rate was made publicly available and distributed via the AAPM website and a medical physics list server.
J Appl Clin Med Phys
March 2017
AlignRT is a surface imaging system that has been utilized for localizing and tracking patient position during radiotherapy. AlignRT has two calibration procedures that can set the system's isocenter called "Monthly Calibration" (MC) and "Isocentre Calibration" (IC). The MC utilizes a calibration plate.
View Article and Find Full Text PDFFrameless, surface imaging guided radiosurgery (SIG-RS) is a novel platform for stereotactic radiosurgery (SRS) wherein patient positioning is monitored in real-time through infra-red camera tracking of facial topography. Here we describe our initial clinical experience with SIG-RS for the treatment of benign neoplasms of the skull base. We identified 48 patients with benign skull base tumors consecutively treated with SIG-RS at a single institution between 2009 and 2011.
View Article and Find Full Text PDFPurpose: To examine the abilities of a traditional failure mode and effects analysis (FMEA) and modified healthcare FMEA (m-HFMEA) scoring methods by comparing the degree of congruence in identifying high risk failures.
Methods: The authors applied two prospective methods of the quality management to surface image guided, linac-based radiosurgery (SIG-RS). For the traditional FMEA, decisions on how to improve an operation were based on the risk priority number (RPN).
Background: The purpose of this study is to evaluate the dosimetric benefits of a proton arc technique for treating tumors of the para-aortic lymph nodes (PALN).
Method: In nine patients, a proton arc therapy (PAT) technique was compared with intensity modulated radiation therapy (IMRT) and proton beam therapy (PBT) techniques with respect to the planning target volume (PTV) and organs at risk (OAR). PTV coverage, conformity index (CI), homogeneity index (HI) and OAR doses were compared.
Purpose: Anatomic distortion is present in all magnetic resonance imaging (MRI) data because of nonlinearity of gradient fields; it measures up to several millimeters. We evaluated the potential for uncorrected MRI to lead to geometric miss of the target volume in stereotactic radiosurgery (SRS).
Methods And Materials: Twenty-eight SRS cases were studied retrospectively.
Purpose: In surface image guided radiosurgery, action limits are created to determine at what point intrafractional motion exhibited by the patient is large enough to warrant intervention. Action limit values remain constant across patients despite the fact that patient motion affects the target coverage of brain metastases differently depending on the planning technique and other treatment plan-specific factors. The purpose of this work was twofold.
View Article and Find Full Text PDFPurpose: Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis.
View Article and Find Full Text PDFPurpose: The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images.
View Article and Find Full Text PDFPurpose: Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA.
View Article and Find Full Text PDFBackground: Stereotactic radiosurgery (SRS) is a well-accepted treatment for patients with intracranial metastases, but outcomes with volumetric modulated arc radiosurgery (VMAR) are poorly described.
Objective: To report our initial clinical experience applying a novel single-isocenter technique to frameless VMAR for simultaneous treatment of multiple intracranial metastases.
Methods: We performed a retrospective analysis of 15 patients undergoing frameless VMAR for multiple intracranial metastases using a single, centrally located isocenter in the period 2009 and 2011.
Purpose: Stereotactic radiosurgery (SRS) is well accepted treatment for patients with intracranial metastases, but the role of frameless radiosurgery is not well defined. Here, we describe our clinical experience applying a novel single-isocenter technique to frameless intensity modulated stereotactic radiosurgery (IMRS) for simultaneous treatment of multiple intracranial metastases.
Methods And Materials: Between 2006 and 2012, 100 consecutive patients received frameless IMRS for multiple intracranial metastases using a single, centrally-located isocenter.