Publications by authors named "Gwang-Mun Choi"

The aim of this study was to develop a flexible package technology using laser-assisted bonding (LAB) technology and an anisotropic solder paste (ASP) material ultimately to reduce the bonding temperature and enhance the flexibility and reliability of flexible devices. The heat transfer phenomena during the LAB process, mechanical deformation, and the flexibility of a flexible package were analyzed by experimental and numerical simulation methods. The flexible package was fabricated with a silicon chip and a polyimide (PI) substrate.

View Article and Find Full Text PDF

Flexible micro-light-emitting diodes (f-μLEDs) have been regarded as an attractive light source for the next-generation human-machine interfaces, thanks to their noticeable optoelectronic performances. However, when it comes to their practical utilizations fulfilling industrial standards, there have been unsolved reliability and durability issues of the f-μLEDs, despite previous developments in the high-performance f-μLEDs for various applications. Herein, highly robust flexible μLEDs (f-HμLEDs) with 20 × 20 arrays, which are realized by a siloxane-based organic-inorganic hybrid material (SHM), are reported.

View Article and Find Full Text PDF

An epoxy-based solder paste (ESP) is a promising alternative to conventional solder pastes to improve the reliability of fine-pitch electrical joining because the epoxy encapsulates the solder joint. However, development of an appropriate epoxy formulation and investigation of its reaction mechanism with solder powder is challenging. In this study, we demonstrate a newly designed ESP consisting of diglycidyl ether of bisphenol F (DGEBF) resin, Sn-3.

View Article and Find Full Text PDF

A high performance ladder-like structured methacrylate siloxane hybrid material (LMSH) was fabricated via simple hydrolytic sol⁻gel reaction, followed by free-radical polymerization. A structurally ordered siloxane backbone, the ladder-like structure, which is an essential factor for high performance, could be achieved by a short period of sol⁻gel reaction in only 4 h. This results in superior optical (Transmittance > 90% at 550 nm), thermal (T > 400 ℃ ), mechanical properties(elastic recovery = 0.

View Article and Find Full Text PDF

Any transition toward an era of flexible electronics will have to overcome the mechanical limitations of materials. Specifically, the attainment of both strength and flexibility, which are generally mutually exclusive, is required including glass-like wear resistance, plastic-like compliance, and a high level of strain. Here, we fabricate a urethane-methacrylate-siloxane hybrid (UMSH) material.

View Article and Find Full Text PDF

Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate.

View Article and Find Full Text PDF

A flexible hard coating for foldable displays is realized by the highly cross-linked siloxane hybrid using structure-property relationships in organic-inorganic hybridization. Glass-like wear resistance, plastic-like flexibility, and highly elastic resilience are demonstrated together with outstanding optical transparency. It provides a framework for the application of siloxane hybrids in protective hard coatings with high scratch resistance and flexibility for foldable displays.

View Article and Find Full Text PDF

We report on the fabrication of a siloxane-encapsulated quantum dot (QD) film (QD-silox film), which exhibits stable emission intensity for over 1 month even at elevated temperature and humidity. QD-silox films are solidified via free radical addition reaction between oligosiloxane resin and ligand molecules on QDs. We prepare the QD-oligosiloxane resin by sol-gel condensation reaction of silane precursors with QDs blended in the precursor solution, forgoing ligand-exchange of QDs.

View Article and Find Full Text PDF