As an indicator of synchronous neural activity, resting-state functional networks are influenced by neuropathological and neurochemical changes in degenerative diseases. To further advance understanding about neurochemical and neuropathological basis for resting-state functional maps, we performed a comparative analysis of resting-state functional connectivity in patients with Parkinson's disease (PD) and drug induced parkinsonism (DIP). Resting-state neuroimaging data were analyzed with a seed-based approach to investigate striatocortical functional connectivity and cortical functional connectivity within the default mode network, executive control network, and the dorsal attention network.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by degenerative changes of nigral dopamine neurons, resulting in the dopaminergic denervation of the striatum. Resting state networks studies have demonstrated that dopamine modulates distinct network connectivity patterns in both a linear and a nonlinear fashion, but quantitative analyses of dopamine-dependent functional connectivity secondary to PD pathology were less informative. In the present study, we performed a correlation analysis between striatal dopamine levels assessed quantitatively by FP-CIT positron emission tomography imaging and resting-state functional connectivity in 23 drug naïve de novo patients with PD to elucidate dopamine-dependent functional networks.
View Article and Find Full Text PDF