We report the growth of GaN nanowires at a low temperature of 750 °C and at atmospheric pressure in a conventional chemical vapor deposition (CVD) setup via the vapor-liquid-solid mechanism with remarkable control of directionality and growth behavior by using an in situ magnetic field. Under typical growth conditions, without any magnetic field, the nanowires are severely twisted and kinked, and exhibit a high density of planar stacking defects. With increasing in situ magnetic field strength, the microstructural defects are found to decrease progressively, and quasi-aligned nanowires are produced.
View Article and Find Full Text PDF