[This corrects the article on p. 101 in vol. 45, PMID: 26131370.
View Article and Find Full Text PDFPurpose: Sclerostin, an inhibitor of Wnt/β-catenin signaling, exerts negative effects on bone formation and contributes to periodontitis-induced alveolar bone loss. Recent studies have demonstrated that serum sclerostin levels are increased in diabetic patients and that sclerostin expression in alveolar bone is enhanced in a diabetic periodontitis model. However, the molecular mechanism of how sclerostin expression is enhanced in diabetic patients remains elusive.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) and canonical Wnts are representative developmental signals that enhance osteoblast differentiation and bone formation. Previously, we demonstrated that epidermal growth factor (EGF) inhibits BMP2-induced osteoblast differentiation by inducing Smurf1 expression. However, the regulatory role of EGF in Wnt/β-catenin-induced osteoblast differentiation has not been elucidated.
View Article and Find Full Text PDFMicroRNAs are novel key regulators of cellular differentiation. Dlx transcription factors play an important role in osteoblast differentiation, and Dlx5 and Dlx2 are known targets of miR-124. Therefore, in the present study, we investigated the regulatory effects of miR-124 on the osteogenic differentiation and in vivo bone formation of mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFIt has been demonstrated that epidermal growth factor (EGF) plays a role in supporting the proliferation of bone marrow stromal cells in bone but inhibits their osteogenic differentiation. However, the mechanism underlying EGF inhibition of osteoblast differentiation remains unclear. Smurf1 is an E3 ubiquitin ligase that targets Smad1/5 and Runx2, which are critical transcription factors for bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation.
View Article and Find Full Text PDFSclerostin decreases bone mass by antagonizing the Wnt signaling pathway. We examined whether obesity-induced bone loss is associated with the expression of sclerostin. Five-week-old male mice were assigned to one of two groups (n = 10 each) and fed either a control diet (10% kcal from fat; CON) or a high-fat diet (60% kcal from fat; HF) for 12 weeks.
View Article and Find Full Text PDFSmad ubiquitination regulatory factor 1 (Smurf1) is an E3 ubiquitin ligase that negatively regulates osteoblast differentiation. Although tumor necrosis factor-α (TNF-α) has been shown to increase Smurf1 expression, the details of the regulatory mechanisms remain unclear. Here, we investigated the molecular mechanism by which TNF-α stimulates Smurf1 expression in C2C12 and primary cultured mouse calvarial cells.
View Article and Find Full Text PDFMatrix extracellular phosphoglycoprotein (MEPE) is a specific marker of mineralizing osteoblasts and osteocytes. Canonical BMP and Wnt signaling pathways are two of the strongest paracrine signals stimulating osteogenesis. Our previous results indicated that Mepe expression is stimulated by the BMP-2-signaling pathway.
View Article and Find Full Text PDFRunx2 is a critical transcription factor for osteoblast differentiation. Regulation of Runx2 expression levels and transcriptional activity is important for bone morphogenetic protein (BMP)-induced osteoblast differentiation. Previous studies have shown that extracellular signal-regulated kinase (Erk) activation enhances the transcriptional activity of Runx2 and that BMP-induced Runx2 acetylation increases Runx2 stability and transcriptional activity.
View Article and Find Full Text PDFFibrodysplasia ossificans progressiva (FOP), a rare genetic and catastrophic disorder characterized by progressive heterotopic ossification, is caused by a point mutation, c.617G>A; p.R206H, in the activin A receptor type 1 (ACVR1) gene, one of the bone morphogenetic protein type I receptors (BMPR-Is).
View Article and Find Full Text PDFTNF-alpha, a proinflammatory cytokine, inhibits osteoblast differentiation under diverse inflammatory conditions; however, the underlying mechanisms in terms of the TNF-alpha signaling pathway remain unclear. In this study, we examined the role of Msx2 in TNF-alpha-mediated inhibition of alkaline phosphatase (ALP) expression and the signaling pathways involved. TNF-alpha down-regulated ALP expression induced by bone morphogenetic protein 2 (BMP2) in C2C12 and Runx2(-/-)calvarial cells.
View Article and Find Full Text PDFCalcium sulfate (CS) is an osteoconductive material with a long history of clinical use. However, its resorptive properties are not optimal for bone regeneration. Recently, histone deacetylase inhibitors (HDIs) have been suggested as bone regeneration tools.
View Article and Find Full Text PDFBoston-type craniosynostosis is caused by a single amino acid substitution, P148H, in the transcription factor MSX2. The increased binding affinity of MSX2 (P148H) to the response element has led many to hypothesize that the substitution is a gain-of-function mutation. However, there have been conflicting reports on the function of MSX2, and by extension, the nature of the P148H mutation remains unclear.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) functions in various cellular physiological processes such as proliferation, differentiation, and motility. Although recent studies have reported that EGFR signaling is involved in osteoclast recruitment and formation, the molecular mechanism of EGFR signaling for the regulation of osteoclastogenesis remains unclear. We investigated the role of the EGFR in osteoclast differentiation and survival and show that the expression of the EGFR was highly up-regulated by receptor activator of nuclear factor-kappaB ligand (RANKL) during osteoclast differentiation.
View Article and Find Full Text PDFPeriodontitis is an inflammatory process that ultimately results in tooth loss. Although the primary etiologic agent for periodontitis is bacteria, the majority of periodontal tissue destruction is thought to be caused by an inappropriate host response. Reactive oxygen species (ROS) have been known to be involved in periodontal tissue destruction.
View Article and Find Full Text PDFEstrogen deficiency causes osteoporosis via increased generation of reactive oxygen species (ROS), and thus, antioxidants may prove to be the effective therapeutic candidates. We examined the effects of the antioxidant N-acetylcysteine (NAC) on osteoblastic differentiation in mouse calvarial cells. NAC (10-30 mM) enhanced alkaline phosphatase activity, mRNA expression of osteoblast differentiation-associated genes and mineralized nodule formation.
View Article and Find Full Text PDFHistone deacetylase inhibitors (HDIs), a new class of anti-cancer agents, have been reported to suppress formation of osteoclast precursors and their fusion into multinucleated cells. However, little is known about the effect of HDIs on mature osteoclasts, which may have significance for their therapeutic use. Here, we demonstrate a novel action of HDIs on osteoclast apoptosis.
View Article and Find Full Text PDFAlthough glucocorticoids are known to affect osteoclast differentiation and function, there have been conflicting reports about the effect of glucocorticoids on osteoclast formation, leading to the assumption that microenvironment and cell type influence their action. We explored the effect of the synthetic glucocorticoid analog dexamethasone on the formation of osteoclasts. Dexamethasone inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts without affecting the formation of TRAP-positive mononuclear cells in a coculture of mouse osteoblasts and bone marrow cells.
View Article and Find Full Text PDFNano-fibrous poly(L-lactic acid) (PLLA) scaffolds with interconnected pores were developed under the hypothesis that nano-fibrous scaffolding would mimic a morphological function of collagen fibrils to create a more favorable microenvironment for cells versus solid-walled scaffolds. In this study, an in vitro system was used to examine biological properties of the nano-fibrous scaffolds compared with those of solid-walled scaffolds for their potential use in bone tissue engineering. Biomineralization was enhanced substantially on the nano-fibrous scaffolds compared to solid-walled scaffolds, and this was confirmed by von Kossa staining, measurement of calcium contents, and transmission electron microscopy.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2006
Tetraspanin CD9 has been shown to regulate cell-cell fusion in sperm-egg fusion and myotube formation. However, the role of CD9 in osteoclast, another multinucleated cell type, is not still clear. Therefore, we investigated the role of CD9 in osteoclast differentiation.
View Article and Find Full Text PDFHigh ambient Ca2+ at bone resorption sites have been implicated to play an important role in the regulation of bone remodeling. The present study was performed to clarify the mode of high extracellular Ca2+ (Ca2+(e))-induced modulation of osteoclastogenesis and the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG), thereby to define its role in osteoclast formation. Mouse bone marrow cells were cocultured with osteoblastic cells in the absence or presence of osteoclastogenic factors such as 1,25-dihydroxyvitaminD3 (1,25-(OH)2vitD3)and macrophage colony-stimulating factor/soluble RANKL.
View Article and Find Full Text PDFAlthough extracellular calcium (Ca(2+)(o)) has been suggested to modulate bone remodeling, the exact mechanism is unclear. This study was performed to explore the signaling pathways of high Ca(2+)(o) that are responsible for controlling the expression of receptor activator of NF-kappaB ligand (RANKL) in mouse osteoblastic cells. As previously reported, high Ca(2+)(o) increased RANKL expression.
View Article and Find Full Text PDFThe mechanism of inhibitory action of bisphosphonates on bone resorption is not fully elucidated. Osteoclast formation and activity are regulated by osteoblast-derived factors such as the osteoclast differentiating factor, receptor activator of NF-kappaB ligand (RANKL) and the inhibitor, osteoprotegerin (OPG). To investigate in vitro effects of bisphosphonates on mouse osteoblastic cells, we examined the expression levels of RANKL and OPG in the cells treated with alendronate or pamidronate (10(-8) approximately 10(-5) M) alone, or combined with 10 nM of 1,25-(OH)2VitD3 for 24 or 48 h.
View Article and Find Full Text PDF