Antibody-based therapeutics (ABTs), including monoclonal/polyclonal antibodies and fragment crystallizable region (Fc)-fusion proteins, are increasingly used in disease treatment, driving the global market growth. Understanding the pharmacokinetic (PK) properties of ABTs is crucial for their clinical effectiveness. This study investigated the PK profile and tissue distribution of efineptakin alfa, a long-acting recombinant human interleukin-7 (rhIL-7-hyFc), using enzyme-linked immunosorbent assay (ELISA) and accelerator mass spectrometry (AMS).
View Article and Find Full Text PDFPhenol is a carcinogenic and hazardous chemical used in multiple industries and poses a high risk of chemical spills into the environment. To date, environmental forensic research has not focused on chemically remediated soils. In this study, an advanced environmental forensic analysis was performed on microbial communities and breakdown products of phenol, carbon stable isotopes, and radioactive isotopes in phenol-contaminated soil.
View Article and Find Full Text PDFAs the potential of pluripotent stem cell-derived differentiated cells has been demonstrated in regenerative medicine, differentiated vascular endothelial cells (ECs) are emerging as a therapeutic agent for the cardiovascular system. To verify the therapeutic efficacy of differentiated ECs in an ischemic model, human embryonic stem cells (hESCs) are induced as EC lineage and produce high-purity ECs through fluorescence-activated cell sorting (FACS). When hESC-ECs are transplanted into a hindlimb ischemic model, it is confirmed that blood flow and muscle regeneration are further improved by creating new blood vessels together with autologous ECs than the primary cell as cord blood endothelial progenitor cells (CB-EPCs).
View Article and Find Full Text PDFReactive astrogliosis is a hallmark of Alzheimer's disease (AD). However, a clinically validated neuroimaging probe to visualize the reactive astrogliosis is yet to be discovered. Here, we show that PET imaging with 11C-acetate and 18F-fluorodeoxyglucose (18F-FDG) functionally visualizes the reactive astrocyte-mediated neuronal hypometabolism in the brains with neuroinflammation and AD.
View Article and Find Full Text PDFAmyloid-β (Aβ) in the form of neurotoxic aggregates is regarded as the main pathological initiator and key therapeutic target of Alzheimer's disease. However, anti-Aβ drug development has been impeded by the lack of a target needed for structure-based drug design and low permeability of the blood-brain barrier (BBB). An attractive therapeutic strategy is the development of amyloid-based anti-Aβ peptidomimetics that exploit the self-assembling nature of Aβ and penetrate the BBB.
View Article and Find Full Text PDFDespite the tremendous advancements made in cell tracking, in vivo imaging and volumetric analysis, it remains difficult to accurately quantify the number of infused cells following stem cell therapy, especially at the single cell level, mainly due to the sensitivity of cells. In this study, we demonstrate the utility of both liquid scintillator counter (LSC) and accelerator mass spectrometry (AMS) in investigating the distribution and quantification of radioisotope labeled adipocyte derived mesenchymal stem cells (AD-MSCs) at the single cell level after intravenous (IV) transplantation. We first show the incorporation of C-thymidine (5 nCi/ml, 24.
View Article and Find Full Text PDFNew therapeutic biological entities such as bispecific antibodies targeting tissue or specific cell populations form an increasingly important part of the drug development portfolio. However, these biopharmaceutical agents bear the risk of extensive target-mediated drug disposition or atypical pharmacokinetic properties as compared to canonical antibodies. Pharmacokinetics and bio-distribution studies become therefore more and more important during lead optimization.
View Article and Find Full Text PDFOver the last decade, physiologically based pharmacokinetics (PBPK) application has been extended significantly not only to predicting preclinical/human PK but also to evaluating the drug-drug interaction (DDI) liability at the drug discovery or development stage. Herein, we describe a case study to illustrate the use of PBPK approach in predicting human PK as well as DDI using , and derived parameters. This case was composed of five steps such as: simulation, verification, understanding of parameter sensitivity, optimization of the parameter and final evaluation.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2015
A new aptamer selection method using graphene oxide (GO)-adsorbed nanoparticles (GO-adsorbed NPs) was employed for specific fishing of palladium ion. High affinity ssDNA aptamers were isolated through 13 rounds of selection and the capacity of the selected DNA aptamers for palladium ion uptake was measured, clarifying that DNA01 exhibits the highest affinity to palladium ion with a dissociation constant (Kd) of 4.60±1.
View Article and Find Full Text PDFInt J Clin Exp Med
September 2014
Lycii Fructus was used as natural products with therapeutic properties for a long time. Betaine is a natural amino acid and one of the major constituents of Lycii Fructus. It is reported that this fruit plays a role in reducing blood levels of homocysteine, a toxic byproduct of the amino acid metabolism.
View Article and Find Full Text PDFA colorimetric sandwich-type assay based on enzyme-linked aptamer assay has been developed for the fast and sensitive detection of as low as 25 fM of thrombin with high linearity. Aptamer-immobilized glass was used to capture the target analyte, whereas a second aptamer, functionalized with horseradish peroxidase (HRP), was employed for the conventional 3,5,3',5'-tetramethylbenzidine (TMB)-based colorimetric detection. Without the troublesome antibody requirement of the conventional enzyme-linked immunosorbent assay (ELISA), as low as 25 fM of thrombin could be rapidly and reproducibly detected.
View Article and Find Full Text PDFBackground: The NSCLC patients who experienced good clinical responses to an EGFR-TKI will inevitably develop acquired resistance. A great deal of research is being carried out to discover the molecular mechanisms underlying this resistance. In comparison, few studies have been conducted to find out about the clinical characteristics of acquired resistance in the patients who had responded to an EGFR-TKI.
View Article and Find Full Text PDFFood Chem Toxicol
February 2014
With the goal of developing soluble epoxide hydrolase (sEH) inhibitors with novel chemical structures, the sEH inhibitory activities of 30 natural compounds were evaluated using both a fluorescent substrate, 3-phenyl-cyano(6-methoxy-2-naphthalenyl)methyl ester- 2-oxiraneacetic acid, and a physiological substrate, 14,15-epoxyeicosatrienoic acid. To evaluate the selectivity of sEH inhibition, the inhibition of microsomal epoxide hydrolase (mEH), which plays a critical role in detoxification of toxic epoxides, was determined using human liver microsomes. Honokiol and β-amyrin acetate, isolated from Magnolia officinalis and Acer mandshuricum, respectively, displayed strong inhibition of sEH activity, with respective IC50 values of 0.
View Article and Find Full Text PDFOur objective was to create a novel fluorogenic substrate for efficient in vitro kinetic assays on caspase-3. We designed a TAMRA (5'-tetramethylrhodamine-5(6)-carboxamide)- and Cy5 (cyanine 5)-labeled probe that allowed us to evaluate the caspase-3 activity via the changes in fluorescence intensity and wavelength. The prepared probe was found to be an efficient and selective substrate of caspase-3, with V(max) of 41.
View Article and Find Full Text PDFAptamer-based biochips for selective cell detection and quantitation in combination of the recent biochip technology and the conventional cell staining methods are described. Using a model system comprising HER2- or PSMA-positive cells as the analytes and single-stranded RNA aptamers specific for HER2 or PSMA as immobilized ligands on chips, we could demonstrate that aptamers were equivalent or superior to antibodies in terms of specificity and sensitivity, respectively. In particular, our PSMA-specific sensor was found to have the characteristics of good stability, reproducibility and reusability, with detection limit as low as 10(3) LNCaP cells.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2012
An aptamer-based biochip for protein detection and quantitation which combines the recent biochip technology and the conventional staining methods, is described. Using a model system comprising His-tagged proteins as the analyte and single-stranded RNA aptamers specific for His-tagged proteins as immobilized ligands on chips, we could demonstrate that aptamers were equivalent or superior to antibodies in terms of specificity and sensitivity, respectively. The sensor has the characteristics of good stability, reproducibility and reusability, with detection limit as low as 85 ng/mL His-tagged protein.
View Article and Find Full Text PDFLung Cancer
March 2012