Publications by authors named "Guzzon F"

Seed storage life in tropical areas is shortened by high humidity and temperature and the general inaccessibility to dehumidifying and refrigeration systems, resulting in rapid decreases in seed viability in storage as well as a high incidence of fungal and insect infestations. The dry chain, based on rapid and deep drying of seeds after harvest followed by packaging in moisture-proof containers, has been proposed as an effective method to maintain seed quality during medium-term storage in humid climates, even without refrigeration. In addition, seed drying with zeolite drying beads can be more effective and economical than sun or heated-air drying under these warm, humid conditions.

View Article and Find Full Text PDF

Conservation of plant genetic diversity is fundamental for crop improvement, increasing agricultural production and sustainability, especially in the face of climatic changes. Although seed longevity is essential for the management of seed banks, few studies have, so far, addressed differences in this trait among the accessions of a single species. Eight Pisum sativum L.

View Article and Find Full Text PDF

Seed longevity is a complex trait that depends on numerous factors. It varies among species and populations, and within different seed morphs produced by the same plant. Little is known about variation in longevity in different seed morphs or the physiological and molecular basis of these differences.

View Article and Find Full Text PDF

Background And Aims: The long-term conservation of seeds of plant genetic resources is of key importance for food security and preservation of agrobiodiversity. Nevertheless, there is scarce information available about seed longevity of many crops under germplasm bank conditions.

Methods: Through germination experiments as well as the analysis of historical monitoring data, we studied the decline in viability manifested by 1000 maize (Zea mays subsp.

View Article and Find Full Text PDF

Bet-hedging is a complex evolutionary strategy involving morphological, eco-physiological, (epi)genetic and population dynamics aspects. We review these aspects in flowering plants and propose further research needed for this topic. Bet-hedging is an evolutionary strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness.

View Article and Find Full Text PDF

Crop wild relatives are fundamental genetic resources for crop improvement. Wheat wild relatives often produce heteromorphic seeds that differ in morphological and physiological traits. Several Aegilops and Triticum species possess, within the same spikelet, a dimorphic seed pair, with one seed being larger than the other.

View Article and Find Full Text PDF

Crop landraces are fundamental resources to increase the eroded genepool of modern crops in order to adapt agriculture to future challenges; plus, they are of immeasurable heritage and cultural value. Between the 1940s and the 1960s open-pollinated varieties (OPVs) of flint and semi-flint maize in Europe were almost completely replaced by high-yielding hybrid dent cultivars selected in North America. No comprehensive assessment was performed after the 1950s to understand which maize genetic resources survived genetic erosion in northern Italy, an area characterized by a high degree of landraces extinction and introgression, intensive hybrid dent monocultures, as well as being one of the hotspots of maize cultivation at a continental level.

View Article and Find Full Text PDF

Crop Wild Relatives are often used to improve crop quality and yields because they contain genetically important traits that can contribute to stress resistance and adaptation. Seed germination of different populations of Aegilops geniculata Roth collected along a latitudinal gradient was studied under different drought stress in order to find populations suitable for improving drought tolerance in wheat. Different accessions of Aegilops neglecta Req.

View Article and Find Full Text PDF

Human apolipoprotein H (apo H) displays a genetically determined structural polymorphism: three alleles (H*1, H*2 and H*3) on chromosome 17 code for the six phenotypes (three homozygotes and three heterozygotes). The effect of apolipoprotein polymorphism on individual variations in plasma lipoprotein levels has been underscored in recent years. Since apo H is involved in metabolism of triglycerides (Tg), its phenotype could affect Tg levels.

View Article and Find Full Text PDF