Publications by authors named "Guzel Kudoyarova"

Little information is available on how rhizosphere bacteria affect abscisic acid (ABA) levels in plants and whether these bacterial effects are associated with improved plant water status. In this study, we tested the hypothesis that the stimulation of plant growth may be associated with the ability of ABA to increase the hydraulic conductivity of roots through the up-regulation of aquaporin. To do this, we studied the effect of bacteria capable of producing ABA on a barley mutant deficient in this hormone.

View Article and Find Full Text PDF

The hormonal system plays a decisive role in controlling plant growth and development [...

View Article and Find Full Text PDF

The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants' adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment.

View Article and Find Full Text PDF

Improving the quality of tree planting material for carbon sequestration through reforestation can help solve environmental problems, including the need to reduce the concentration of carbon dioxide in the atmosphere. The purpose of this study was to investigate the possibility of using humic substances in combination with rhizosphere microorganisms DA1.2 and sp.

View Article and Find Full Text PDF

Cytokinins are mobile phytohormones that regulate plant growth, development, and environmental adaptability. The major cytokinin species include isopentenyl adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin (DZ). The spatial distributions of different cytokinin species in different organelles, cells, tissues, and organs are primarily shaped by biosynthesis via isopentenyltransferases (IPT), cytochrome P450 monooxygenase, and 5'-ribonucleotide phosphohydrolase and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase.

View Article and Find Full Text PDF

Adaptation to changes in the environment depends, in part, on signaling between plant organs to integrate adaptive response at the level of the whole organism. Changes in the delivery of hormones from one organ to another through the vascular system strongly suggest that hormone transport is involved in the transmission of signals over long distances. However, there is evidence that, alternatively, systemic responses may be brought about by other kinds of signals (e.

View Article and Find Full Text PDF

The phytohormone abscisic acid (ABA) plays a central role in regulating stomatal movements under drought conditions. The root-derived peptide CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 25 (CLE25) moves from the root to shoot for activating ABA biosynthesis under drought conditions. However, the root-to-shoot translocation of root-derived ABA and its regulation of stomatal movements in the shoot remain to be clarified.

View Article and Find Full Text PDF

The articles published in the Special Issue "Phytohormones" are devoted to various aspects of hormonal control of plant growth and development promoting adaptation to normal and stress conditions [...

View Article and Find Full Text PDF

High-density planting can increase crop productivity per unit area of cultivated land. However, the application of this technology is limited by the inhibition of plant growth in the presence of neighbors, which is not only due to their competition for resources but is also caused by growth regulators. Specifically, the abscisic acid (ABA) accumulated in plants under increased density of planting has been shown to inhibit their growth.

View Article and Find Full Text PDF

Inhibition of root elongation is an important growth response to salinity, which is thought to be regulated by the accumulation of jasmonates and auxins in roots. Nevertheless, the mechanisms of the interaction of these hormones in the regulation of the growth response to salinity are still not clear enough. Their better understanding depends on the study of the distribution of jasmonates and auxins between root cells.

View Article and Find Full Text PDF

Cytokinins are known to keep stomata open, which supports gas exchange and correlates with increased photosynthesis. However, keeping the stomata open can be detrimental if the increased transpiration is not compensated for by water supply to the shoots. In this study, we traced the effect of (isopentenyl transferase) gene induction, which increases the concentration of cytokinins in transgenic tobacco plants, on transpiration and hydraulic conductivity.

View Article and Find Full Text PDF

Depending on their habitat conditions, plants can greatly change the growth rate of their roots. However, the mechanisms of such responses remain insufficiently clear. The influence of a low level of illumination on the content of endogenous auxins, their localization in leaves and transport from shoots to roots were studied and related to the lateral root branching of barley plants.

View Article and Find Full Text PDF

The formation of apoplastic barriers is important for controlling the uptake of water and ions by plants, thereby influencing plant growth. However, the effects of plant growth-promoting bacteria on the formation of apoplastic barriers, and the relationship between these effects and the ability of bacteria to influence the content of hormones in plants, have not been sufficiently studied. The content of cytokinins, auxins and potassium, characteristics of water relations, deposition of lignin and suberin and the formation of Casparian bands in the root endodermis of durum wheat ( Desf.

View Article and Find Full Text PDF

The search for ways to increase plant productivity in drought conditions is of fundamental importance, since soil moisture deficiency is widespread and leads to critical crop losses. The aim of this study was to identify the effects of plant growth-promoting bacteria and humic substances on the growth, chlorophyll, flavonoids, nitrogen balance index, and concentration of cytokinins and abscisic acids in wheat plants grown in the laboratory under conditions of water deficit. An increase in the accumulation of plant mass was shown during the treatment of wheat plants with 2,4-D and humic substances in these conditions.

View Article and Find Full Text PDF

Lipid transfer proteins (LTPs) are known to be involved in suberin deposition in the Casparian bands of pea roots, thereby reinforcing apoplast barriers. Moreover, the IB-Ki14 strain accelerated formation of the Casparian bands in wheat plants, although involvement of LTPs in the process was not studied. Here, we investigated the effects of IB-Ki14 on LTPs, formation of the Casparian bands, hydraulic conductance and activity of aquaporins (AQPs) in pea plants.

View Article and Find Full Text PDF

The stomatal closure of salt-stressed plants reduces transpiration bringing about the maintenance of plant tissue hydration. The aim of this work was to test for any involvement of aquaporins (AQPs) in stomatal closure under salinity. The changes in the level of aquaporins in the cells were detected with the help of an immunohistochemical technique using antibodies against HvPIP2;2.

View Article and Find Full Text PDF
Phytohormones 2020.

Biomolecules

September 2022

The hormonal system plays a decisive role in the control of plant growth and development [...

View Article and Find Full Text PDF

Plants frequently experience hypoxia due to flooding caused by intensive rainfall or irrigation, when they are partially or completely submerged under a layer of water. In the latter case, some resistant plants implement a hypoxia avoidance strategy by accelerating shoot elongation, which allows lifting their leaves above the water surface. This strategy is achieved due to increased water uptake by shoot cells through water channels (aquaporins, AQPs).

View Article and Find Full Text PDF

Both rhizosphere bacteria and humic substances (HSs) can promote plant growth when applied individually and even greater effects of their combination have been demonstrated. We aimed to elucidate the relative importance of the stimulating effects of HSs on bacterial growth and the effects of the combination of bacteria and HSs on plants themselves. The effects of humic (HA) and fulvic acids (FA) (components of humic substances) on the growth of 2,4-D in vitro were studied.

View Article and Find Full Text PDF

strain IB-Ki14 has recently been shown to strengthen the apoplastic barriers of salt-stressed plants, which prevents the entry of toxic sodium. It was of interest to find out whether the same effect manifests itself in the absence of salinity and how this affects the hydraulic conductivity of barley plants. Berberine staining confirmed that the bacterial treatment enhanced the deposition of lignin and suberin and formation of Casparian bands in the roots of barley plants.

View Article and Find Full Text PDF

We used the enzyme-linked immunosorbent assay (ELISA) to assess the level of endogenous hormones in spruce pollen, and immunolocalization and confocal microscopy to study hormone localization in spruce and tobacco pollen. During pollen activation, the levels of ABA, zeatin, and its riboside significantly decreased. After the initiation of polar growth, the levels of all cytokinins increased sharply; ABA level also increased.

View Article and Find Full Text PDF

Inoculation with plant growth-promoting rhizobacteria can increase plant salt resistance. We aimed to reveal bacterial effects on the formation of apoplastic barriers and hormone concentration in relation to maintaining ion homeostasis and growth of salt-stressed plants. The rhizosphere of a durum wheat variety was inoculated with cytokinin-producing and auxin-producing strains.

View Article and Find Full Text PDF

Changes in root elongation are important for the acquisition of mineral nutrients by plants. Plant hormones, cytokinins, and abscisic acid (ABA) and their interaction are important for the control of root elongation under changes in the availability of ions. However, their role in growth responses to supra-optimal concentrations of nitrates and phosphates has not been sufficiently studied and was addressed in the present research.

View Article and Find Full Text PDF

Lipid transfer proteins (LTPs) participate in many important physiological processes in plants, including adaptation to stressors, e.g., salinity.

View Article and Find Full Text PDF