Directing self-assembly of photopolymerizable systems is advantageous for controlling polymer nanostructure and material properties, but developing techniques for inducing ordered structure remains challenging. In this work, well-defined diblock or random copolymers were incorporated into cationic photopolymerizable epoxy systems to investigate the impact of copolymer architecture on self-assembly and phase separated nanostructures. Copolymers consisting of poly(hydroxyethyl acrylate)(butyl acrylate) were prepared using photoiniferter polymerization to control functional group placement and molecular weight/polydispersity.
View Article and Find Full Text PDFThe durability of photografted zwitterionic hydrogel coatings on cochlear implant biomaterials was examined to determine the viability of these antifouling surfaces during insertion and long-term implant usage. Tribometry was used to determine the effect of zwitterionic coatings on the lubricity of surfaces with varying hydration levels, applied normal force, and time frame. Additionally, flexural resistance was investigated using mandrel bending.
View Article and Find Full Text PDF. Cochlear implants provide auditory perception to those with severe to profound sensorineural hearing loss: however, the quality of sound perceived by users does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons.
View Article and Find Full Text PDFUtilizing self-assembled lyotropic liquid crystal (LLC) templates with radical photopolymerization shows promise in controlling polymer structure on the nanometer scale This control of nanostructure allows tailoring and enhancement of material properties not attainable in traditional polymerization in applications including hydrogels and stimuli-responsive systems. However, thermodynamically driven phase separation between the polymer and LLC templates often hinders the control of local polymer order and resultant polymer properties. This study investigates an alternative method to control the hydrogel nanostructure and avoid phase separation using imidazolium ionic liquids (ILs) in the LLC template while modulating the light intensity used in photopolymerization.
View Article and Find Full Text PDFCochlear implants (CIs) provide auditory perception to those with profound sensorineural hearing loss: however, the quality of sound perceived by a CI user does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function.
View Article and Find Full Text PDFThe foreign body response to implanted materials often complicates the functionality of sensitive biomedical devices. For cochlear implants, this response can reduce device performance, battery life and preservation of residual acoustic hearing. As a permanent and passive solution to the foreign body response, this work investigates ultra-low-fouling poly(carboxybetaine methacrylate) (pCBMA) thin film hydrogels that are simultaneously photo-grafted and photo-polymerized onto polydimethylsiloxane (PDMS).
View Article and Find Full Text PDFDentin biomodification is a promising approach to enhance dental tissue biomechanics and biostability for restorative and reparative therapies. One of the most active dentin tissue biomodifiers is proanthocyanidin (PAC)-rich natural extracts, which are used in the dental bonding procedure in combination with resin-based adhesives (RBAs). This study aimed to investigate the use of mesoporous silica nanoparticles (MSNs) for the sustained delivery of PACs for dentin biomodification as a novel drug-delivery system for dental applications.
View Article and Find Full Text PDFACS Appl Bio Mater
February 2021
Due to its attractive mechanical properties and biocompatibility, poly(dimethyl)siloxane (PDMS) is widely used in the fabrication of biomedical materials. On the other hand, PDMS is also prone to adsorption of both proteins and bacteria, making PDMS implants susceptible to infection. Herein, we examine the use of durably cross-linked zwitterionic coatings for PDMS surfaces to mitigate bacterial adhesion.
View Article and Find Full Text PDFZwitterionic polymer networks have shown promise in reducing the short- and long-term inflammatory foreign body response to implanted biomaterials by combining the antifouling properties of zwitterionic polymers with the mechanical stability provided by cross-linking. Cross-link density directly modulates mechanical properties (i.e.
View Article and Find Full Text PDFFunctional outcomes with neural prosthetic devices, such as cochlear implants, are limited in part due to physical separation between the stimulating elements and the neurons they stimulate. One strategy to close this gap aims to precisely guide neurite regeneration to position the neurites in closer proximity to electrode arrays. Here, we explore the ability of micropatterned biochemical and topographic guidance cues, singly and in combination, to direct the growth of spiral ganglion neuron (SGN) neurites, the neurons targeted by cochlear implants.
View Article and Find Full Text PDFHypothesis: Application of photografted zwitterionic coatings to cochlear implant (CI) biomaterials will reduce friction and insertion forces.
Background: Strategies to minimize intracochlear trauma during implantation of an electrode array are critical to optimize outcomes including preservation of residual hearing. To this end, advances in thin-film zwitterionic hydrogel coatings on relevant biomaterials may show promise, in addition to the potential of these materials for decreasing the intracochlear foreign body response.
Transmission of SARS-CoV-2, the virus that causes COVID-19, is common in congregate settings such as correctional and detention facilities (1-3). On September 17, 2020, a Utah correctional facility (facility A) received a report of laboratory-confirmed SARS-CoV-2 infection in a dental health care provider (DHCP) who had treated incarcerated persons at facility A on September 14, 2020 while asymptomatic. On September 21, 2020, the roommate of an incarcerated person who had received dental treatment experienced COVID-19-compatible symptoms*; both were housed in block 1 of facility A (one of 16 occupied blocks across eight residential units).
View Article and Find Full Text PDFCell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform.
View Article and Find Full Text PDFDegradable polymers are integral components in many biomedical polymer applications. The ability of these materials to decompose in situ has become a critical component for tissue engineering, allowing scaffolds to guide cell and tissue growth while facilitating gradual regeneration of native tissue. The objective of this work is to understand the role of prepolymer molecular weight and functionality of photocurable poly(caprolactone) (PCL) in determining reaction kinetics, mechanical properties, polymer degradation, biocompatibility, and suitability for stereolithography.
View Article and Find Full Text PDFThe foreign body response (FBR) to implantable materials can negatively impact performance of medical devices such as the cochlear implant. Engineering surfaces that resist the FBR could lead to enhanced functionality including potentially improving outcomes for cochlear implant recipients through reduction in fibrosis. In this work, we coat poly(dimethylsiloxane) (PDMS) surfaces with two zwitterionic polymers, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA), using a simultaneous photografting/photo-cross-linking process to produce a robust grafted zwitterionic hydrogel.
View Article and Find Full Text PDFBackground: Botulism is a rare, sometimes lethal neuroparalytic illness. On 2 October 2011, an inmate at prison A developed symptoms compatible with botulism after drinking pruno, an illicit, prison-brewed alcoholic beverage. Additional illnesses were identified within several days.
View Article and Find Full Text PDFHypothesis: Microtopographical patterns generated by photopolymerization of methacrylate polymer systems will direct growth of neurites from adult neurons, including spiral ganglion neurons (SGNs).
Background: Cochlear implants (CIs) provide hearing perception to patients with severe to profound hearing loss. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by spread of the electrical currents in the inner ear.
ACS Appl Mater Interfaces
September 2017
Cochlear Implants (CIs) suffer from limited tonal resolution due, in large part, to spatial separation between stimulating electrode arrays and primary neural receptors. In this work, a combination of physical and chemical micropatterns, formed on acrylate polymers, are used to direct the growth of primary spiral ganglion neurons (SGNs), the inner ear neurons. Utilizing the inherent temporal and spatial control of photopolymerization, physical microgrooves are fabricated using a photomask in a single step process.
View Article and Find Full Text PDFDeveloping and regenerating neurites respond to a variety of biophysical and biochemical cues in their micro-environment to reach target cells and establish appropriate synapses. Defining the hierarchal relationship of both types of cues to direct neurite growth carries broad significance for neural development, regeneration, and, in particular, engineering of neural prostheses that improve tissue integration with native neural networks. In this work, chemorepulsive biochemical borders are established on substrates with a range of surface microfeatures to determine the potential of physical cues to overcome conflicting biochemical cues.
View Article and Find Full Text PDFDeveloping materials that reduce or eliminate fibrosis encapsulation of neural prosthetic implants could significantly enhance implant fidelity by improving the tissue/electrode array interface. Here, we report on the photografting and patterning of two zwitterionic materials, sulfobetaine methacrylate (SBMA) and carboxybetaine methacrylate (CBMA), for controlling the adhesion and directionality of cells relevant to neural prosthetics. CBMA and SBMA polymers were photopolymerized and grafted on glass surfaces then characterized by X-ray photoelectron spectroscopy, water contact angle, and protein adsorption.
View Article and Find Full Text PDFMost sense organs of arthropods are ensconced in small exoskeletal compartments that hinder direct access to plasma membranes. We have developed a method for exposing live sensory and supporting cells in such structures. The technique uses a viscous light cured resin to embed and support the structure, which is then sliced with a sharp blade.
View Article and Find Full Text PDFBackground: The role of microbial colonization in disease is complex. Novel molecular tools to detect colonization offer theoretical improvements over traditional methods. We evaluated PCR/Electrospray Ionization-Time-of-Flight-Mass Spectrometry (PCR/ESI-TOF-MS) as a screening tool to study colonization of healthy military service members.
View Article and Find Full Text PDFThe first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth.
View Article and Find Full Text PDFMicro- and nanoscale surface features have emerged as potential tools to direct neurite growth into close proximity with next generation neural prosthesis electrodes. However, the signaling events underlying the ability of growth cones to respond to topographical features remain largely unknown. Accordingly, this study probes the influence of [Ca(2+) ]i and cyclic nucleotide levels on the ability of neurites from spiral ganglion neurons (SGNs) to precisely track topographical micropatterns.
View Article and Find Full Text PDFThe development of effective tissue engineering materials requires careful consideration of several properties beyond biocompatibility, including permeability and mechanical stiffness. While surfactant templating has been used for over a decade to control the physical properties of photopolymer materials, the potential benefit of this technique with regard to biomaterials has yet to be fully explored. Herein we demonstrate that surfactant templating can be used to tune the water uptake and compressive modulus of photo-cross-linked chitosan hydrogels.
View Article and Find Full Text PDF