Publications by authors named "Guyer G"

Background: Non-coplanarity and mixed beam modality could be combined to further enhance dosimetric treatment plan quality. We introduce dynamic mixed beam arc therapy (DYMBARC) as an innovative technique that combines non-coplanar photon and electron arcs, dynamic gantry and collimator rotations, and intensity modulation with photon multileaf collimator (MLC). However, finding favorable beam directions for DYMBARC is challenging due to the large solution space, machine component constraints, and optimization parameters, posing a highly non-convex optimization problem.

View Article and Find Full Text PDF
Article Synopsis
  • Non-isocentric dynamic trajectory radiotherapy (DTRT) is a new way to target radiation therapy that uses special movements of the machine to hit the tumor from different angles without being stuck in one spot.
  • Researchers are creating a technique that helps decide the best path for the radiation beams, making sure they avoid healthy organs while still reaching the tumor effectively.
  • Comparisons of different treatment plans show that this new method can give better radiation distribution to the tumor and lower the radiation dose to nearby healthy organs.
View Article and Find Full Text PDF

Dynamic trajectory radiotherapy (DTRT) and dynamic mixed-beam arc therapy (DYMBARC) exploit non-coplanarity and, for DYMBARC, simultaneously optimized photon and electron beams. Margin concepts to account for set-up uncertainties during delivery are ill-defined for electron fields. We develop robust optimization for DTRT&DYMBARC and compare dosimetric plan quality and robustness for both techniques and both optimization strategies for four cases.

View Article and Find Full Text PDF

Background And Purpose: Dynamic trajectory radiotherapy (DTRT) has been shown to improve healthy tissue sparing compared to volumetric arc therapy (VMAT). This study aimed to assess and compare the robustness of DTRT and VMAT treatment-plans for head and neck (H&N) cancer to patient-setup (PS) and machine-positioning uncertainties.

Materials And Methods: The robustness of DTRT and VMAT plans previously created for 46 H&N cases, prescribed 50-70 Gy to 95 % of the planning-target-volume, was assessed.

View Article and Find Full Text PDF

We compared dynamic trajectory radiotherapy (DTRT) to state-of-the-art volumetric modulated arc therapy (VMAT) for 46 head and neck cancer cases. DTRT had lower dose to salivary glands and swallowing structure, resulting in lower predicted xerostomia and dysphagia compared to VMAT. DTRT is deliverable on C-arm linacs with high dosimetric accuracy.

View Article and Find Full Text PDF

Background: Non-coplanar techniques have shown to improve the achievable dose distribution compared to standard coplanar techniques for multiple treatment sites but finding optimal beam directions is challenging. Dynamic collimator trajectory radiotherapy (colli-DTRT) is a new intensity modulated radiotherapy technique that uses non-coplanar partial arcs and dynamic collimator rotation.

Purpose: To solve the beam angle optimization (BAO) problem for colli-DTRT and non-coplanar VMAT (NC-VMAT) by determining the table-angle and the gantry-angle ranges of the partial arcs through iterative 4π fluence map optimization (FMO) and beam direction elimination.

View Article and Find Full Text PDF

. Electron arcs in mixed-beam radiotherapy (Arc-MBRT) consisting of intensity-modulated electron arcs with dynamic gantry rotation potentially reduce the delivery time compared to mixed-beam radiotherapy containing electron beams with static gantry angle (Static-MBRT). This study aims to develop and investigate a treatment planning process (TPP) for photon multileaf collimator (pMLC) based Arc-MBRT.

View Article and Find Full Text PDF

Non-coplanar radiotherapy treatment techniques on C-arm linear accelerators have the potential to reduce dose to organs-at-risk in comparison with coplanar treatment techniques. Accurately predicting possible collisions between gantry, table and patient during treatment planning is needed to ensure patient safety. We offer a freely available collision prediction tool using Blender, a free and open-source 3D computer graphics software toolset.

View Article and Find Full Text PDF

Background: Dynamic trajectory radiotherapy (DTRT) extends state-of-the-art volumetric modulated arc therapy (VMAT) by dynamic table and collimator rotations during beam-on. The effects of intrafraction motion during DTRT delivery are unknown, especially regarding the possible interplay between patient and machine motion with additional dynamic axes.

Purpose: To experimentally assess the technical feasibility and quantify the mechanical and dosimetric accuracy of respiratory gating during DTRT delivery.

View Article and Find Full Text PDF

Presently electron beam treatments are delivered using dedicated applicators. An alternative is the usage of the already installed photon multileaf collimator (pMLC) enabling efficient electron treatments. Currently, the commissioning of beam models is a manual and time-consuming process.

View Article and Find Full Text PDF

The computational effort to perform beamlet calculation, plan optimization and final dose calculation of a treatment planning process (TPP) generating intensity modulated treatment plans is enormous, especially if Monte Carlo (MC) simulations are used for dose calculation. The goal of this work is to improve the computational efficiency of a fully MC based TPP for static and dynamic photon, electron and mixed photon-electron treatment techniques by implementing multiple methods and studying the influence of their parameters.A framework is implemented calculating MC beamlets efficiently in parallel on each available CPU core.

View Article and Find Full Text PDF

The purpose of this study is to develop a treatment planning process (TPP) for non-isocentric dynamic trajectory radiotherapy (DTRT) using dynamic gantry rotation, collimator rotation, table rotation, longitudinal, vertical and lateral table translations and intensity modulation and to validate the dosimetric accuracy.The TPP consists of two steps. First, a path describing the dynamic gantry rotation, collimator rotation and dynamic table rotation and translations is determined.

View Article and Find Full Text PDF

Background: Dynamic trajectory radiotherapy (DTRT) extends volumetric modulated arc therapy (VMAT) with dynamic table and collimator rotation during beam-on. The aim of the study is to establish DTRT path-finding strategies, demonstrate deliverability and dosimetric accuracy and compare DTRT to state-of-the-art VMAT for common head and neck (HN) cancer cases.

Methods: A publicly available library of seven HN cases was created on an anthropomorphic phantom with all relevant organs-at-risk (OARs) delineated.

View Article and Find Full Text PDF

Background And Purpose: To assess the feasibility of postoperative stereotactic body radiation therapy (SBRT) for patients with hybrid implants consisting of carbon fiber reinforced polyetheretherketone and titanium (CFP-T) using CyberKnife.

Materials And Methods: All essential steps within a radiation therapy (RT) workflow were evaluated. First, the contouring process of target volumes and organs at risk (OAR) was done for patients with CFP-T implants.

View Article and Find Full Text PDF

Background: Evaluating plan robustness is a key step in radiotherapy.

Purpose: To develop a flexible Monte Carlo (MC)-based robustness calculation and evaluation tool to assess and quantify dosimetric robustness of intensity-modulated radiotherapy (IMRT) treatment plans by exploring the impact of systematic and random uncertainties resulting from patient setup, patient anatomy changes, and mechanical limitations of machine components.

Methods: The robustness tool consists of two parts: the first part includes automated MC dose calculation of multiple user-defined uncertainty scenarios to populate a robustness space.

View Article and Find Full Text PDF

The purpose of this work was to develop a hybrid column generation (CG) and simulated annealing (SA) algorithm for direct aperture optimization (H-DAO) and to show its effectiveness in generating high quality treatment plans for intensity modulated radiation therapy (IMRT) and mixed photon-electron beam radiotherapy (MBRT). The H-DAO overcomes limitations of the CG-DAO with two features improving aperture selection (branch-feature) and enabling aperture shape changes during optimization (SA-feature). The H-DAO algorithm iteratively adds apertures to the plan.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses how to improve cancer treatment plans using a special method called robust optimization for mixed-beam radiotherapy (MBRT).
  • They created and tested this new approach with real patient cases, focusing on how well it delivered the dose to the target area and protected nearby organs.
  • The results showed that the robust-optimized plans worked better at minimizing harmful doses to organs and were more consistent across different situations compared to traditional methods.
View Article and Find Full Text PDF

Motivation: Progress in the field of magnetic resonance (MR)-guided radiotherapy has triggered the need for fast and accurate dose calculation in presence of magnetic fields. The aim of this work is to satisfy this need by extending the macro Monte Carlo (MMC) method to enable dose calculation for photon, electron, and proton beams in a magnetic field.

Methods: The MMC method is based on the transport of particles in macroscopic steps through an absorber by sampling the relevant physical quantities from a precalculated database containing probability distribution functions.

View Article and Find Full Text PDF

The degradation of anti-inflammatory and antipyretic drug (Ibuprofen; IBP) has been described in this study by using photocatalytic-based advanced oxidation processes. The catalysts (TiO and ZnO) were activated by irradiation of artificial UV lamp and solar rays for the generation of highly oxidizing species which resulted in the degradation of IBP to intermediates and finally to carbon dioxide and water. In solar reactor, quartz and borosilicate tubes were installed for absorption of required ultraviolet rays and curved chrome plates were used to reflect and concentrate rays on the tubes containing feed mixture.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.

View Article and Find Full Text PDF

The study is about the degradation of a widely used anti-inflammatory drug-diclofenac (DCF) by high frequency ultrasound to select the operating conditions and to improve the process efficiency by the addition of iron species. The initial concentration, pH and frequency of operation that rendered maximum degradation of the drug were 30 μM, 3.0 and 861 kHz, respectively.

View Article and Find Full Text PDF

A reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the determination of neomycin in plasma and urine. The plasma was deproteinated with trichloroacetic acid and centrifuged. The supernatant was mixed with ion-pair concentrate and centrifuged again.

View Article and Find Full Text PDF