Metabolite mining of environmentally collected aquatic and marine microbiomes offers a platform for the discovery of new therapeutic lead molecules. Combining a prefractionated chromatography library with liquid chromatography tandem mass spectrometry (LC-MS/MS)-based molecular networking and biological assays, we isolated and characterized two new micropeptins ( and ) along with the previously characterized micropeptin 996. These metabolites showed potency in anti-neuroinflammatory assays using BV-2 mouse microglial cells, showing a 50% reduction in inflammation in a range from 1 to 10 μM.
View Article and Find Full Text PDFCyanobufalins A-C (1-3), a new series of cardiotoxic steroids, have been discovered from cyanobacterial blooms in Buckeye Lake and Grand Lake St. Marys in Ohio. Compounds 1-3 contain distinctive structural features, including geminal methyl groups at C-4, a 7,8 double bond, and a C-16 chlorine substituent that distinguish them from plant- or animal-derived congeners.
View Article and Find Full Text PDFFour new microcystin congeners are described including the first three examples of microcystins containing the rare doubly homologated tyrosine residue 2-amino-5-(4-hydroxyphenyl)pentanoic acid (Ahppa) (1-4). Large-scale harvesting and biomass processing allowed the isolation of substantial quantities of these compounds, thus enabling complete structure determination by NMR as well as cytotoxicity evaluation against selected cancer cell lines. The new Ahppa-toxins all incorporate Ahppa residues at the 2-position, and one of these also has a second Ahppa at position 4.
View Article and Find Full Text PDFErythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines.
View Article and Find Full Text PDFCyanobacteria possess a unique capacity for the production of structurally novel secondary metabolites compared to the biosynthetic abilities of other environmental prokaryotes such as bacteria of the genus Streptomyces. Two different strategies to explore cyanobacteria-derived natural products have been explored previously: (1) cultivation of single cyanobacterial strains, in bioreactors for example; (2) bulk collections from the environment of so called 'algal blooms' that are dominated by cyanobacteria. In this study a new environmentally friendly collection technique for obtaining large quantities of algal bloom biomass was utilized.
View Article and Find Full Text PDFThree new decalin-type tetramic acid analogues, pyrrolocins A (1), B (2), and C (3), were defined as products of a metabolic pathway from a fern endophyte, NRRL 50135, from Papua New Guinea. NRRL 50135 initially produced 1 but ceased its production before chemical or biological evaluation could be completed. Upon transfer of the biosynthetic pathway to a model host, 1-3 were produced.
View Article and Find Full Text PDFThe lomaiviticins are a family of cytotoxic marine natural products that have captured the attention of both synthetic and biological chemists due to their intricate molecular scaffolds and potent biological activities. Here we describe the identification of the gene cluster responsible for lomaiviticin biosynthesis in strains DPJ-0016 and DPJ-0019 using a combination of molecular approaches and genome sequencing. The link between the gene cluster and lomaiviticin production was confirmed using bacterial genetics, and subsequent analysis and annotation of this cluster revealed the biosynthetic basis for the core polyketide scaffold.
View Article and Find Full Text PDFThis Highlight explores the evolution of applications of mass spectrometric technologies in the context of natural products research since the 1970's. The central themes are the analysis of mixtures, dereplication (identification) and structure determination. The ascension of HPLC as the method of choice for the analysis of pharmaceuticals was a driving force for the development of interfaces for coupling of HPLC and MS.
View Article and Find Full Text PDFThe rapK gene required for biosynthesis of the DHCHC starter acid that initiates rapamycin biosynthesis was deleted from strain BIOT-3410, a derivative of Streptomyces rapamycinicus which had been subjected to classical strain and process development and capable of robust rapamycin production at titres up to 250mg/L. The resulting strain BIOT-4010 could no longer produce rapamycin, but when supplied exogenously with DHCHC produced rapamycin at titres equivalent to its parent strain. This strain enabled mutasynthetic access to new rapalogs that could not readily be isolated from lower titre strains when fed DHCHC analogs.
View Article and Find Full Text PDFNat Prod Rep
October 2011
Although natural products have been marginalized by major pharmaceutical companies over the last 20-30 years, the changing landscape of drug discovery now favors a greatly enhanced role for Nature's privileged structures. Screening for drug leads in phenotypic screens provides the best opportunity to realize the value of natural products. Advances in total synthesis, especially function-oriented syntheses and biosynthetic technologies offer new avenues for the medicinal chemical optimization of biologically active secondary metabolites.
View Article and Find Full Text PDFThe pyrroloquinoline alkaloid family of natural products, which includes the immunosuppressant lymphostin, has long been postulated to arise from tryptophan. We now report the molecular basis of lymphostin biosynthesis in three marine Salinispora species that maintain conserved biosynthetic gene clusters harboring a hybrid nonribosomal peptide synthetase-polyketide synthase that is central to lymphostin assembly. Through a series of experiments involving gene mutations, stable isotope profiling, and natural product discovery, we report the assembly-line biosynthesis of lymphostin and nine new analogues that exhibit potent mTOR inhibitory activity.
View Article and Find Full Text PDFThe macrocyclic polyketides FK506, FK520, and rapamycin are potent immunosuppressants that prevent T-cell proliferation through initial binding to the immunophilin FKBP12. Analogs of these molecules are of considerable interest as therapeutics in both metastatic and inflammatory disease. For these polyketides the starter unit for chain assembly is (4R,5R)-4,5-dihydroxycyclohex-1-enecarboxylic acid derived from the shikimate pathway.
View Article and Find Full Text PDFAppl Environ Microbiol
July 2010
The culturable diversity of endophytic actinomycetes associated with tropical, native plants is essentially unexplored. In this study, 123 endophytic actinomycetes were isolated from tropical plants collected from several locations in Papua New Guinea and Mborokua Island, Solomon Islands. Isolates were found to be prevalent in roots but uncommon in leaves.
View Article and Find Full Text PDFThree lipocyclopeptide antibiotics, aspartocins A (1), B (2), and C (3), were obtained from the aspartocin complex by HPLC separation methodology. Their structures were elucidated using previously published chemical degradation results coupled with spectroscopic studies including ESI-MS, ESI-Nozzle Skimmer-MSMS and NMR. All three aspartocin compounds share the same cyclic decapeptide core of cyclo [Dab2 (Asp1-FA)-Pip3-MeAsp4-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11].
View Article and Find Full Text PDFThe pharmaceutical industry is facing an ever increasing challenge to deliver safer and more effective medicines. Traditionally, drug discovery programs were driven solely by potency, regardless of the properties. As a result, the development of non-drug-like molecules was costly, had high risk and low success rate.
View Article and Find Full Text PDFThe effectiveness of precursor-directed biosynthesis to generate diazepinomicin (1) analogues with varied ring-A substitutents was investigated by feeding commercially available, potential ring-A precursors such as fluorinated tryptophans, halogenated anthranilates, and various substituted indoles into growing actinomycete culture DPJ15 (genus Micromonospora). Two new monofluorinated diazepinomicin analogues (2 and 3) were identified and characterized by spectroscopic methods. Both derivatives showed modest antibacterial activity against the Gram-positive coccus Staphylococcus aureus with MIC values in the range 8-32 microg/mL.
View Article and Find Full Text PDFExpression of biosynthetic pathways in heterologous hosts is an emerging approach to expedite production improvement and biosynthetic modification of natural products derived from microbial secondary metabolites. Herein we describe the development of a versatile Escherichia coli-Streptomyces shuttle Bacterial Artificial Chromosomal (BAC) conjugation vector, pSBAC, to facilitate the cloning, genetic manipulation, and heterologous expression of actinomycetes secondary metabolite biosynthetic gene clusters. The utility of pSBAC was demonstrated through the rapid cloning and heterologous expression of one of the largest polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) biosynthetic pathways: the meridamycin biosynthesis gene cluster (mer).
View Article and Find Full Text PDFTwo natural products, diazepinomicin (1) and dioxapyrrolomycin (2), containing stable isotopic labels of (15)N or deuterium, were used to demonstrate the utility of Fourier transform ion cyclotron resonance mass spectrometry for probing natural product biosynthetic pathways. The isotopic fine structures of significant ions were resolved and subsequently assigned elemental compositions on the basis of highly accurate mass measurements. In most instances the mass measurement accuracy is less than one part per million (ppm), which typically makes the identification of stable-isotope labeling unambiguous.
View Article and Find Full Text PDFThe solubility of a compound depends on its structure and solution conditions. Structure determines the lipophilicity, hydrogen bonding, molecular volume, crystal energy and ionizability, which determine solubility. Solution conditions are affected by pH, co-solvents, additives, ionic strength, time and temperature.
View Article and Find Full Text PDFFeasible modes of introducing the nitro group into pyrrolomycin antibiotics were investigated based on incorporation of (15)N-labeled arginine and proline into dioxapyrrolomycin, produced by the actinomycete culture LL-F42248. Biosynthesis of nitrated pyrrolomycins was unaffected by the presence of nitric oxide synthase (NOS) inhibitors. The culture was able to grow in nitrogen-free (minimal) media and produce nitrated secondary metabolites.
View Article and Find Full Text PDFA direct liquid chromatographic enantioselective separation of venlafaxine and 11 analogs was obtained in the normal phase mode using Chiralpak AD. For some compounds, a comparison between the enantioseparation using coated and immobilized amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak AD and Chiralpak IA, respectively) was made. The best separations were achieved on Chiralpak AD with ethanol as alcoholic modifier in a mobile phase made basic by DEA addition: separation factor ranges between 2.
View Article and Find Full Text PDFThe novel microbial metabolite diazepinomicin/ECO-4601 (1) has a unique tricyclic dibenzodiazepinone core, which was unprecedented among microbial metabolites. Labeled feeding experiments indicated that the carbocyclic ring and the ring nitrogen of tryptophan could be incorporated via degradation to the 3-hydroxyanthranilic acid, forming ring A and the nonamide nitrogen of 1. Genomic analysis of the biosynthetic locus indicated that the farnesyl side chain was mevalonate derived, the 3-hydroxyanthranilic acid moiety could be formed directly from chorismate, and the third ring was constructed via 3-amino-5-hydroxybenzoic acid.
View Article and Find Full Text PDF