Publications by authors named "Guy Sobol"

Type 2C protein phosphatases (PP2Cs) are essential for regulating plant immune responses to pathogens. Our study focuses on the tomato PP2C-immunity associated candidate 6 (Pic6), elucidating its role in negatively regulating pattern-triggered immunity (PTI) signaling pathways in tomato. Using reverse-transcription quantitative polymerase chain reaction (RT-qPCR), we observed that treatment with microbe-associated molecular patterns (MAMPs)-flg22 and flgII-28-significantly increased mRNA levels in wild-type (RG-PtoR) tomato plants.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used CRISPR/Cas9 technology to edit genes in tomato plants (Solanum lycopersicum) related to hydrotropism, identifying three MIZ1-like genes that respond to drought and moisture stimulation.
  • * Analysis showed that the gene SlMIZ1-1 is crucial for root hydrotropism in tomatoes, suggesting that understanding these molecular mechanisms could enhance crop resilience and performance in water-limited conditions caused by climate change.
View Article and Find Full Text PDF

Type 2C protein phosphatases (PP2Cs) constitute a large family in most plant species, but relatively few of them have been implicated in immunity. To identify and characterize PP2C phosphatases that affect tomato (Solanum lycopersicum) immunity, we generated loss-of-function mutations in 11 PP2C-encoding genes whose expression is altered in response to immune elicitors or pathogens. We report that 2 closely related PP2C phosphatases, PP2C immunity-associated candidate 3 (Pic3) and Pic12, are involved in regulating resistance to the bacterial pathogen Pseudomonas syringae pv.

View Article and Find Full Text PDF

Type 2C protein phosphatases (PP2Cs) are emerging as important regulators of plant immune responses, although little is known about how they might impact nucleotide-binding, leucine-rich repeat (NLR)-triggered immunity (NTI). We discovered that expression of the PP2C immunity-associated candidate 14 gene (Pic14) is induced upon activation of the Pto/Prf-mediated NTI response in tomato. Pto/Prf recognizes the effector AvrPto translocated into plant cells by the pathogen Pseudomonas syringae pv.

View Article and Find Full Text PDF
Article Synopsis
  • Plant cells use pattern recognition receptors (PRRs) to detect potential pathogens through recognizing microbe-associated molecular patterns (MAMPs), triggering pattern-triggered immunity (PTI).
  • In tomatoes, the interaction of Fls2/Fls3 with the receptor-like cytoplasmic kinase (RLCK) Fir1 is crucial for PTI when flagellin is detected.
  • Fir1 is also important for regulating jasmonic acid (JA) signaling, as it physically interacts with JAZ3, a protein that negatively regulates this signaling pathway.
View Article and Find Full Text PDF

Detection of bacterial flagellin by the tomato (Solanum lycopersicum) receptors Flagellin sensing 2 (Fls2) and Fls3 triggers activation of pattern-triggered immunity (PTI). We identified the tomato Fls2/Fls3-interacting receptor-like cytoplasmic kinase 1 (Fir1) protein that is involved in PTI triggered by flagellin perception. Fir1 localized to the plasma membrane and interacted with Fls2 and Fls3 in yeast (Saccharomyces cerevisiae) and in planta.

View Article and Find Full Text PDF

The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant , revealing the potential to employ PP2C proteins to enhance plant disease resistance.

View Article and Find Full Text PDF

Pattern-triggered immunity (PTI) is typically initiated in plants by recognition of pathogen- or damage-associated molecular patterns (PAMP/DAMPs) by cell surface-localized pattern recognition receptors (PRRs). Here, we investigated the role in PTI of Arabidopsis thaliana brassinosteroid-signalling kinases 7 and 8 (BSK7 and BSK8), which are members of the receptor-like cytoplasmic kinase subfamily XII. BSK7 and BSK8 localized to the plant cell periphery and interacted in yeast and in planta with FLS2, but not with other PRRs.

View Article and Find Full Text PDF

The 14-3-3 phospho-binding proteins with scaffolding activity play central roles in the regulation of enzymes and signaling complexes in eukaryotes. In plants, 14-3-3 isoforms are required for disease resistance and key targets of pathogen effectors. Here, we examined the requirement of the tomato (Solanum lycopersicum) 14-3-3 isoform (TFT) protein family for Xv3 disease resistance in response to the bacterial pathogen Xanthomonas euvesicatoria.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session95qp5jrqe8sn5b1rqb0rd4o46log4l9p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once