In daily life, prehension is typically not the end goal of hand-object interactions but a precursor for manipulation. Nevertheless, functional MRI (fMRI) studies investigating manual manipulation have primarily relied on prehension as the end goal of an action. Here, we used slow event-related fMRI to investigate differences in neural activation patterns between prehension in isolation and prehension for object manipulation.
View Article and Find Full Text PDFFingertip force scaling during hand-object interactions typically relies on visual information about the object and sensorimotor memories from previous object interactions. Here, we investigated whether contextual information, that is not explicitly linked to the intrinsic object properties (e.g.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) studies showed that corticospinal excitability (CSE) is modulated during observation of object lifting, an effect termed 'motor resonance'. Specifically, motor resonance is driven by movement features indicating object weight, such as object size or observed movement kinematics. We investigated in 16 humans (8 females) whether motor resonance is also modulated by an object's weight distribution.
View Article and Find Full Text PDFObservation of object lifting allows updating of internal object representations for object weight, in turn enabling accurate scaling of fingertip forces when lifting the same object. Here, we investigated whether lift observation also enables updating of internal representations for an object's weight distribution. We asked participants to lift an inverted T-shaped manipulandum, of which the weight distribution could be changed, in turns with an actor.
View Article and Find Full Text PDFSkillful object lifting relies on scaling fingertip forces according to the object's weight. When no visual cues about weight are available, force planning relies on previous lifting experience. Recently, we showed that previously lifted objects also affect weight estimation, as objects are perceived to be lighter when lifted after heavy objects compared with after light ones.
View Article and Find Full Text PDFTranscranial magnetic stimulation studies have highlighted that corticospinal excitability is increased during observation of object lifting, an effect termed "motor resonance." This facilitation is driven by movement features indicative of object weight, such as object size or observed movement kinematics. Here, we investigated in 35 humans (23 females) how motor resonance is altered when the observer's weight expectations, based on visual information, do not match the actual object weight as revealed by the observed movement kinematics.
View Article and Find Full Text PDFFront Hum Neurosci
October 2019
Recent studies have highlighted that the observation of hand-object interactions can influence perceptual weight judgments made by an observer. Moreover, observing salient motor errors during object lifting allows individuals to update their internal sensorimotor representation about object weight. Embodying observed visuomotor cues for the planning of a motor command further enables individuals to accurately scale their fingertip forces when subsequently lifting the same object.
View Article and Find Full Text PDFPrimary liver cancer comprises a diverse group of liver tumors. The heterogeneity of these tumors is seen as one of the obstacles to finding an effective therapy. The Hippo pathway, with its downstream transcriptional co-activator Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), has a decisive role in the carcinogenesis of primary liver cancer.
View Article and Find Full Text PDFEven though it has been suggested that the dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) are highly involved in the planning of bimanual movements, the exact nature (facilitatory or inhibitory) of their role is not well understood. Using a dual-site transcranial magnetic stimulation (TMS) paradigm, we examined the functional influence from DLPFC and PMd to the contralateral primary cortex (M1) during the preparation of a complex bimanual coordination task in which inter-hand movement frequency was manipulated. Only the left PMd showed inter-hand frequency-specific modulations in the interaction with the contralateral M1.
View Article and Find Full Text PDFUnlabelled: Changes in both brain structure and neurophysiological function regulating homotopic as well as heterotopic interhemispheric interactions (IHIs) are assumed to be responsible for the bimanual performance deficits in older adults. However, how the structural and functional networks regulating bimanual performance decline in older adults, as well as the interplay between brain structure and function remain largely unclear. Using a dual-site transcranial magnetic stimulation paradigm, we examined the age-related changes in the interhemispheric effects from the dorsolateral prefrontal cortex and dorsal premotor cortex onto the contralateral primary motor cortex (M1) during the preparation of a complex bimanual coordination task in human.
View Article and Find Full Text PDF