Publications by authors named "Guy Malkinson"

Brain perivascular macrophages (PVMs) are border-associated macrophages situated along blood vessels in the Virchow-Robin space and are thus found at a unique anatomical position between the endothelium and the parenchyma. Owing to their location and phagocytic capabilities, PVMs are regarded as important components that regulate various aspects of brain physiology in health and pathophysiological states. Here, we used LYVE-1 to identify PVMs in the mouse brain using brain-tissue sections and cleared whole-brains to learn about how they are distributed within the brain and across different developmental postnatal stages.

View Article and Find Full Text PDF

Two-photon light-sheet microscopy (2P-SPIM) provides a unique combination of advantages for fast and deep fluorescence imaging in live tissues. Detecting coherent signals such as second-harmonic generation (SHG) in 2P-SPIM in addition to fluorescence would open further imaging opportunities. However, light-sheet microscopy involves an orthogonal configuration of illumination and detection that questions the ability to detect coherent signals.

View Article and Find Full Text PDF

In multiphoton microscopy, the ongoing trend toward the use of excitation wavelengths spanning the entire near-infrared range calls for new standards in order to quantify and compare the performances of microscopes. This article describes a new method for characterizing the imaging properties of multiphoton microscopes over a broad range of excitation wavelengths in a straightforward and efficient manner. It demonstrates how second harmonic generation (SHG) nanoprobes can be used to map the spatial resolution, field curvature, and chromatic aberrations across the microscope field of view with a precision below the diffraction limit and with unique advantages over methods based on fluorescence.

View Article and Find Full Text PDF

Two-photon imaging of endogenous fluorescence can provide physiological and metabolic information from intact tissues. However, simultaneous imaging of multiple intrinsic fluorophores, such as nicotinamide adenine dinucleotide(phosphate) (NAD(P)H), flavin adenine dinucleotide (FAD) and retinoids in living systems is generally hampered by sequential multi-wavelength excitation resulting in motion artifacts. Here, we report on efficient and simultaneous multicolor two-photon excitation of endogenous fluorophores with absorption spectra spanning the 750-1040 nm range, using wavelength mixing.

View Article and Find Full Text PDF

A poorly understood aspect of bone biomineralization concerns the mechanisms whereby ions are sequestered from the environment, concentrated, and deposited in the extracellular matrix. In this study, we follow mineral deposition in the caudal fin of the zebrafish larva in vivo. Using fluorescence and cryo-SEM-microscopy, in combination with Raman and XRF spectroscopy, we detect the presence of intracellular mineral particles located between bones, and in close association with blood vessels.

View Article and Find Full Text PDF

Much of what we know about the mechanisms underlying Homosynaptic Depression (HSD) and heterosynaptic facilitation is based on intracellular recordings of integrated postsynaptic potentials (PSPs). This methodological approach views the presynaptic apparatus as a single compartment rather than taking a more realistic representation reflecting the fact that it is made up of tens to hundreds of individual and independent Presynaptic Release Boutons (PRBs). Using cultured Aplysia sensorimotor synapses, we reexamined HSD and its dishabituation by imaging the release properties of individual PRBs.

View Article and Find Full Text PDF

Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor retardation characterized by neurological impairment and abnormal thyroid hormone (TH) levels. Mutations in the TH transporter, monocarboxylate transporter 8 (MCT8), are associated with AHDS. MCT8 knock-out mice exhibit impaired TH levels; however, they lack neurological defects.

View Article and Find Full Text PDF

Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown.

View Article and Find Full Text PDF

Despite the clear major contribution of hyperlipidemia to the prevalence of cardiovascular disease in the developed world, the direct effects of lipoproteins on endothelial cells have remained obscure and are under debate. Here we report a previously uncharacterized mechanism of vessel growth modulation by lipoprotein availability. Using a genetic screen for vascular defects in zebrafish, we initially identified a mutation, stalactite (stl), in the gene encoding microsomal triglyceride transfer protein (mtp), which is involved in the biosynthesis of apolipoprotein B (ApoB)-containing lipoproteins.

View Article and Find Full Text PDF

Varicosities (VRs) are ubiquitous neuronal structures that are considered to serve as presynaptic structures. The mechanisms of their assembly are unknown. Using cultured Aplysia neurons, we found that in the absence of postsynaptic targets, VRs form at the leading edge of extending neurites when anterogradely transported organelles accumulate within the palm of the growth cone (GC) at a rate that exceeds their utilization by the GC machinery.

View Article and Find Full Text PDF

The use of the sensory-motor (SN-MN) synapse of the Aplysia gill withdrawal reflex has contributed immensely to the understanding of synaptic transmission, learning and memory acquisition processes. Whereas the majority of the studies focused on analysis of the presynaptic mechanisms, recent studies indicated that as in mammalian synapses, long term potentiation (LTP) formed by Aplysia SN-MN synapse depends on elevation of the postsynaptic free intracellular calcium concentration ([Ca2+](i)). Consistently, injection of the fast calcium chelator BAPTA to the MN prevents the formation of serotonin-induced LTP.

View Article and Find Full Text PDF

Microelectrode arrays increasingly serve to extracellularly record in parallel electrical activity from many excitable cells without inflicting damage to the cells by insertion of microelectrodes. Nevertheless, apart from rare cases they suffer from a low signal to noise ratio. The limiting factor for effective electrical coupling is the low seal resistance formed between the plasma membrane and the electronic device.

View Article and Find Full Text PDF

Varicosities are ubiquitous neuronal structures that appear as local swellings along neurites of invertebrate and vertebrate neurons. Surprisingly little is known about their cell biology. We use here cultured Aplysia neurons and demonstrate that varicosities are motile compartments that contain large clusters of organelles.

View Article and Find Full Text PDF

Transformation of a transected axonal tip into a growth cone (GC) is a critical step in the cascade leading to neuronal regeneration. Critical to the regrowth is the supply and concentration of vesicles at restricted sites along the cut axon. The mechanisms underlying these processes are largely unknown.

View Article and Find Full Text PDF

The double C2 domain protein family (DOC2) is characterized by two calcium-binding domains (C2). Upon binding to calcium, the affinity of the protein to phospholipids is significantly increased, leading to translocation of the protein from the cytosol to the plasma membrane. These properties, and the binding domain of DOC2B to Munc13, suggested that DOC2B could play a role in augmentation and potentiation of synaptic release.

View Article and Find Full Text PDF